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ABSTRACT This study presents a new signal and filter design procedure for long-range multiple-input
multiple-output (MIMO) radars with a pulse length shorter than the return time of signals reflected by the
most distant targets. The proposed algorithm adopts and radically improves the method of alternating the
optimization of filters and signals, which was recently published by the same authors. It introduces full
control of the signal envelope variation during the pulse, preserving acceptable peak-to-average power ratio
(PAR) and signal-to-noise ratio (SNR) loss values. This state-of-the-art method allows calculation simplicity
and is important for high-speed computations in adaptive applications. A gradient algorithm was used for
the signal amplitude and phase optimization. The signal amplitude was controlled using a special signal
construction consisting of two complex exponentials.

INDEX TERMS Crosstalk, Doppler effect, iterative optimization, gradient algorithm, MIMO radar, peak
to average power ratio, quadratic programming, separation filter, side lobe, signal envelope, signal to noise
ratio.

I. INTRODUCTION
MIMO communications and radar provide several advan-
tages over conventional devices by significantly increasing
the number of signal paths between the transmitter and the
receiver. For example, in radars, this can be used to improve
the detection parameters and space resolution. Given the
same parameters, the transmitted power can then be used
more efficiently, and the system can better adapt to different
conditions and be protected against undesirable effects such
as clutter or different types of interference. It is also possible
to extend the functionality or accelerate the operation of the
entire radar system by allowing a larger number of missions
to be performed simultaneously. MIMO radar systems can
be divided into two broad groups: collocated and distributed.
In this paper, we discuss radars with collocated antennas, that
is, antennas whose elements are spaced apart by fractions or
multiples of a wavelength.
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Many publications on MIMO radar have focused on sig-
nal optimization and compression/separation filters. Sophis-
ticated MIMO signal and filter design methods have been
developed and optimized, particularly for radars with pulses
longer than the return time of the signal reflected from the
farthest targets [1], [2], [3], [4], [5]. In addition, most of
these methods deal only with constant envelope signals and
matched filters. The matched filters allow for minimum loss
and maximum use of the signal bandwidth for the radar
range resolution. The constant envelope requirement is also
understandable because it allows the transmission power to
be optimized for the given transmitter parameters. These
methods can achieve significant side-lobe and crosstalk sup-
pression (100 dB or more), but only over a limited time lag.
Some publications also deal withmismatched filters (e.g., [6],
[7], and [8]), which, at the cost of a small increase in loss,
allows improvements in side-lobe suppression and crosstalk
over the entire time lag. If the constant envelope requirements
are partially relaxed, it is possible to further improve the
suppression of the side lobes and crosstalk over the entire lag
by up to 20 dB (e.g., [9]).
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The speed of the computation (optimization) of signals or
filters is another aspect of the evaluation of design methods.
Speed is of particular importance in systems where adaptive
changes in operation are required, and it cannot be satisfied
using a predefined set of signals and filters [10], [11], [12],
[13], [14].Most of thementioned signal design algorithms are
very complicated and computationally intensive; therefore,
they do not meet these requirements. However, there are
exceptions such as the algorithms in [10], [11], and [12].

Another issue is the optimization of signals and antennas
in MIMO radar systems [12], [13], [14]. In particular, this
concerns the optimization of antennas in collocated MIMO
systems or station positions in distributed systems.

This paper presents an algorithm for optimizing filters
and signals in collocated MIMO radar systems designed for
target detection and tracking over long ranges. Such radars
use pulsed signals with a length much shorter than the signal
return time from the most distant targets. Typical examples of
such radars are ground surveillance and approach or weather
radar with maximum range of 150 – 450 km (return time is 1
– 3 ms) and pulse length of 10 – 300 µs. For these radars,
efforts should be made to suppress all the side lobes and
crosstalk.

This paper follows [9], where an SWAP algorithm is pre-
sented that splits the entire process into the optimization of
individual filters and signals. Thus, the algorithm is relatively
simple and computationally efficient, making it faster than
variants of theWeCAN algorithm. Similarly, in [11], to speed
up the WeCAN procedure [1], a conversion of the problem
into an alternating optimization of individual signals was
also used. However, the separation proposed in our previous
paper is much more efficient and, unlike the aforementioned
approach [11], allows the optimization of filters as well. The
SWAP algorithm achieved significant suppression of side
lobes and crosstalk as well as substantial simplification of
calculations, thus speeding up the optimization. However, this
comes at the cost of loosening the requirements for a constant
signal envelope and maximum filter efficiency. In the vast
majority of cases, the previous algorithm was able to design
signals and filters with acceptable PAR and SNR loss values.
However, in a limited number of cases, the unequal sizes
of the elements of the complex envelope made this method
unusable.

In this paper, we present an improved algorithm called
UNISWAP that adopts the advantages of alternating filter and
signal optimization while eliminating the main disadvantage
of the previous algorithm, which is its inability to control
the amplitude changes of the signals during the pulse and
the SNR loss of the filters. The new algorithm allows either
keeping of the envelope to be kept constant (equal to one) or
accurately controls the signal amplitude variations during the
pulse. The ratio of the maximum and minimum amplitudes of
the signals can be set from one to infinity. Obviously, a small
increase in loss (approximately 1 dB) and an increase in
PAR (up to approximately 1.2) will not substantially degrade
system performance. At the same time, the new algorithm

allows significant improvements in the side lobe and crosstalk
suppression.

As an optimization criterion, either integrated side-lobe
level (ISL) or peak side-lobe (PSL) minimization can be
chosen. For filter optimization, the new algorithm uses the
least-squares (LS) method for the ISL criterion and quadratic
convex programming for the PSL criterion [15], [16], [17],
[18]. In contrast, for signal optimization, a gradient algo-
rithm [19] was applied, as in [20]. However, in [20], only
constant envelope signals and matched filters were assumed.
To control the amplitude spread over a wider range, even
with the gradient algorithm, a special signal construction is
proposed that converts a problem with hard constraints into
an unconstrained problem.

As shown by our testing, this algorithm can generate low
PAR signals and low SNR loss filters with good suppression
of side lobes and crosstalk under both the ISL and PSL
criteria.

This paper is further organized as follows:
In Section 2, the notations of the quantities used and a

mathematical description of the system are provided. Fur-
thermore, the separation optimization method for each filter
and signal is briefly described, along with the introduction of
weights. Section 3 describes the gradient algorithm used for
signal optimization. The method of optimizing the constant
envelope signals and their extension to variable envelope
signals is described. At the end of this section, the UNISWAP
algorithm is summarized in tabular form. Section 4 presents
the results of the testing of the proposed algorithm under
various conditions. The optimization results (side-lobe and
crosstalk suppression, PAR, and SNR loss), as well as the evo-
lution of the minimized function throughout the optimization,
are presented and discussed.

II. MATHEMATICAL DESCRIPTION
A. PROBLEM FORMULATION
AMIMO radar transmitsM signals in pulses of length τ E and
energy E . The mth signal complex envelope forms a vector

xm =
[
xm (1) , . . . , xm (i) , . . . , xm (N )

]T
,

m = 1, 2, . . . ,M , (1)

with sampling period TS = τ/N . The energy of each signal
is

E = xHm · xm. (2)

All signal complex envelopes can be assembled into a matrix

X =


x1 (1)
...
...

x1 (N )

· · ·

· · ·

xM (1)
...
...

xM (N )

 . (3)

At the receiving end, we use filters with coefficients qm (4) to
separate the signals by transmitters and compress the pulses
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that concentrate the pulse energy on the main lobe.

qm = [qm (1) , . . . , qm (k) , . . . , qm (K )]T ,

m = 1, 2, . . . ,M , (4)

The coefficients meet the normalization condition

qHm · xm = xHm · xm = ε. (5)

Similar to the signals, the coefficients of the filters form a
matrix

Q =


q1(1)
...
...

q1(K )

· · ·

· · ·

qM (1)
...
...

qM (K )

 . (6)

In our application, we consider ed K = N . The outputs
of these filters are the convolutions of the signals and filter
responses zmµ = xm∗qµ. The elements of these convolutions,
that is, the samples of signals at the outputs of the compres-
sion and separation filters, can be written as

zmµ (g) =
g+N∑
k=1

xm (g+ N + 1− k) .qµ (k), (7)

where the lag g = 1 − N , . . . , 0, . . . ,N − 1. If g > N , the
signal samples are xm (g) = 0, if k >N , the filter coefficients
are qµ (k) = 0.

From the convolution vectors, we construct the matrix

Z =



z11 · · · z1µ · · · z1M
...

. . .
...

. . .
...

zm1 · · · zmµ · · · zmM
...

. . .
...

. . .
...

zM1 · · · zMµ · · · zMM


M .(2N−1)×M

. (8)

The convolutions with m = µ represent the signal out-
puts of the corresponding filters. Ideally, these signals have
the energy of the received pulse concentrated in the main
lobe (sample with zero-time lag, g = 0), whereas the
other samples (side lobes) should be minimal. Signals with
m 6=µ indicate unwanted crosstalk that should be suppressed
as much as possible. In this paper, we deal with the opti-
mization of both the xm signals and the qµ filters, with the
goal of maximum suppression of sidelobes and crosstalk with
minimum loss in the main lobes. Therefore, the requirement
tominimize only the side lobes and crosstalk can be expressed
as the requirement to minimize the norm.

8 = ‖J� Z‖` , (9)

under condition (5), where

J =



j11 · · · j1µ · · · j1M
...

. . .
...

. . .
...

jm1 · · · jmµ · · · jmM
...

. . .
...

. . .
...

jM1 · · · jMµ · · · jMM


M .(2N−1)×M

,(10)

jmµ =

 jmµ (1− N )...

jmµ (N − 1)

 ,
jmµ (g) =

(
1− δmµδg0

)
= jµm (g) . (11)

The Kronecker symbol, δmµ = 0 for m 6= µ for m = µ is
δmm = 1 and � is the symbol for the Hadamard product of
matrices. Symbol ` represents the norm type. Clearly, if ` =
F (Frobenius norm), the ISL criterion is used to minimize
the expression 8, and if ` = ∞ (maximum norm), the PSL
criterion is used.

B. SEPARATE OPTIMIZATION OF SIGNALS AND FILTERS
If we restrict ourselves to matched filters and constant
envelope signals, the cyclic approximation (CA) methods
described by several authors [1], [2], [3], [4], [20] can be
used for optimization. Although remarkable results can be
achieved by applying these methods, the suppression of side
lobes and crosstalk is not significant, except in cases where
suppression is favoured over a limited range of time lags g.
Moreover, the aforementioned methods only apply the ISL
criterion.

When we drop the requirements for matched filters but
search for both optimal signals and suitable filters, much
greater suppression can be achieved, and simultaneously,
the optimization process is significantly accelerated. This
procedure can be demonstrated using a matrix expression for
the convolutions.

zmµ = 3m·qµ, (12)

where 3m are Toeplitz matrices created of the signal vector
xm

3m (xm) =



xm (1) 0 . . . 0

xm (2) xm (1)
. . .

...
... xm (2)

. . . 0

xm (N )
...

. . . xm (1)

0 xm (N )
. . . xm (2)

...
. . .

. . .
...

0 . . . 0 xm (N )


. (13)

For the minimized function 8 we get

8 = ‖J� (3 · Q)‖` , (14)

where

3 =

 31
...

3M

 . (15)

Because neither the matrix 3m nor J depends on the coef-
ficients of the filters, if we optimize only the filters Q at the
given signalsX, the overall optimization can be separated into
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the optimization of individual filters in parallel.

qµ = arg
{
min
qµ

[
8µ
]}
, µ = 1, 2 . . . ,M , (16)

under condition (5), where

8µ =
∥∥Jµ ·3·qµ∥∥` , Jµ = diag

 j1µ
...

jMµ

 . (17)

If we use the commutativity of the zmµ convolution, it can
also be expressed as a matrix, as follows:

zµm = 5µ·xm, (18)

5µ =



qµ (1) 0 . . . 0

qµ (2) qµ (1)
. . .

...
... qµ (2)

. . . 0

qµ (N )
...

. . . qµ (1)

0 qµ (N )
. . . qµ (2)

...
. . .

. . .
...

0 . . . 0 qµ (N )


. (19)

Using the same procedure, we conclude that if we perform the
minimization of 8 by optimizing the signals with specified
filters, the task breaks down into separate optimizations of
individual signals.

xm = arg
{
min
xm

[9m]
}
; m = 1, 2 . . . ,M , (20)

under condition (2), where

9m = ‖Jm ·5·xm‖`, 5 =

 51
...

5M

 . (21)

C. WEIGHTING OF SIDELOBES AND CROSSTALK
In some cases, assigning different weights to different side
lobes and crosstalk during optimization are advantageous [1],
[17], [20]. This can be achieved by modifying the diagonal
matrices Jµ (17). Taking a closer look at the elements of
the main diagonal of these matrices, we find that, except for
the main lobe corresponding to the signal-filter pair, all the
elements are ones. By replacing the elements of the main
diagonal of the matrix Jµ with weights wm,µ (g) ∈ 〈0, 1〉,
we create weighting matricesWµ for the functions8µ, while
ensuring zeroing of the main lobes by setting wmm(0) = 0.
Usually, wm,µ (g) = wµ,m (g), then we can use the same
weightingmatricesWm for the functions9m. In the equations
for the optimized functions 8µ, 9m, instead of matrices Jµ,
we insert weighting matrix Wµ

8µ =
∥∥Wµ·3·qµ

∥∥
`
, 9m = ‖Wm·5·xm‖` , (22)

Wµ = diag
[
w1,µ, . . . ,wM ,µ

]
, (23)

wm,µ =
[
wm,µ (1− N ) , . . . ,wm,µ (N − 1)

]
, (24)

Separate filter and signal optimizations can therefore be
written in the form

qµ = arg
{
min
qµ

∥∥Wµ·3·qµ
∥∥
`

}
, µ = 1, 2 . . . ,M , (25)

under the condition

qHm·xm = xHm·xm, wm,m (0) = 0, (26)

and

xm = arg
{
min
xm
‖Wm·5·xm‖`

}
; m = 1, 2 . . . ,M , (27)

under the condition

xHm·xm = ε, wm,m (0) = 0. (28)

Equations (25)–(28) allow the application of a cyclic algo-
rithm alternating between filter and signal optimization.

If no requirements are placed on the signal amplitudes,
an analytical solution (least-squares method) can be used for
the Euclidean norm (` = 2), which significantly speeds up
the iteration process. For the maximum norm (` = ∞), the
problem can be solved using QPQC methods [16], [17], [18].

III. UNISWAP ALGORITHM
A. CONSTANT SIGNAL ENVELOPE
The above-mentioned approach achieved a significant
improvement in side-lobe suppression (compared to the [1],
[2], [3], [4], [5], and [20] algorithms) while maintaining
acceptable values of PAR and SNR loss. However, the
requirements for unit signal modulus and the use of matched
filters must be relaxed.

In some cases, there was an excessive degradation of PAR
and SNR loss; therefore, we began to search for a way
to retain an efficient separation algorithm while having the
envelope constant or maintaining its variations in a defined
range (thus limiting the maximum magnitude of PAR).

First, we consider constant-envelope signals. Again, both
steps of the algorithm alternately optimize filters to signals
and signals to filters so that we preserve the most important
feature of the SWAP algorithm. The filter optimization step
can be implemented in the same manner according to (25)
and (26), as in the case of the SWAP algorithm. In the signal
optimization step, we must change condition (28), under
which we perform minimization to

|xm (n)| = 1⇐⇒ x∗m � xm = 1, (29)

where, 1 is the column vector of N ones. Thus, the key step
of the modified algorithm is to determine new signal vectors
for the already computed filters under condition (29).

xm = arg

 min
xm

x∗m�xm=1

[9m]

 . (30)

It is obvious that minimizing the expression 9m will be the
same as minimizing the function 92

m. Therefore, we can

108254 VOLUME 10, 2022



P. Bezoušek, S. Karamazov: Simultaneous Optimization of Mismatched Filters and Controlled Amplitude Signals

remove the square root from the expression for the norm and
use the weight matrix Wm. Then, it can be written as:

xm = arg

 min
xm

x∗m�xm=1

‖Wm5xm‖`


= arg

 min
xm,

x∗m�xm=1

92
m


= arg

 min
xm,

x∗m�xm=1

‖Wm5xm‖2`

 . (31)

However, the normalization condition in (29) does not satisfy
the requirements of the convex problem. Therefore, it is no
longer possible to use a direct analytical solution for the ISL
criterion or a solution according to [17] for the PSL criterion.
Therefore, we used the classical gradient method [19] to
minimize the function 92

m using only the signal phases,
as in [20]. The samples of the complex envelope, that is, the
elements of vector xm under the unit modulus requirement,
can be expressed as

xm (n) = ejϕm(n). (32)

So, we will optimize N components of the phase vector

ϕm =

 ϕm (1)...
ϕm (N )

 . (33)

The innovated phase vector r+1ϕm is obtained by the r th
iterative step of the gradient algorithm:

r+1ϕm =
rϕm −

rχm·∇92
m
(rϕm) . (34)

where rχm is the length of the r th iteration step and
∇92

m
(
rϕm

)
is the gradient of the minimized function 92

m.
When testing the algorithm, it was found that norm ` = 2 was
the best fit for the gradient algorithm, even in the case of the
PSL criterion. Then we can write

92
m = ‖Wm5xm‖22 = xHm5HWH

mWm5xm
= xHmAmxm, (35)

where

Am = 5HWH
mWm5. (36)

It is clear that matrix Am is constant during the optimization
of the signals because neither the weight matrix Wm nor the
Toeplitz filter matrix 5 depends on the signals. Thus, for
the nth element of the gradient of the minimized function,
the following holds.

∇n9
2
m
(
ϕm
)
≡
∂92

m
(
ϕm
)

∂ϕm (n)

=
∂xHm

∂ϕm (n)
A
m
xm+xHmAm

∂xm
∂ϕm (n)

= 2Re
{
xHmAm

∂xm
∂ϕm (n)

}
. (37)

Because the partial derivatives of the signal vectors by phase
are vectors containing all zeros except for one element,

∂xm
∂ϕm (n)

=
[
0, . . . , jxm (n) , . . . , 0

]T
, (38)

The calculation of the gradient was significantly simplified,
and the entire iteration process was accelerated. The entire
gradient can then be written in simple matrix form as

∇92
m
(
ϕm
)
= 2Re

{
jxm �

(
xHmAm

)T}
. (39)

The gradient algorithm was terminated when the selected
conditions, including the decrease in the minimized function
and size of the gradient norm, were reached. The new value
of the phase vector ϕm found by the described gradient
algorithm becomes the innovated vector i+1ϕm for the i+ 1-
th step of the higher-level iteration of the UNISWAP algo-
rithm. The new signal vector i+1xm is calculated according to
equation (32).

B. CONTROLLED SIGNAL ENVELOPE
The UNISWAP algorithm maintains a constant envelope
(PAR = 1), but the suppression of sidelobes and crosstalk
is not as pronounced as when the SWAP algorithm is used,
which does not limit the signal amplitudes. In Figs.1 and 2
filter outputs are presented for the system with
M = 2 transmitted signals. The upper left and lower right
subplots show filter responses to corresponding signals. Here
we can see that using the SWAP algorithm with no control of
signal amplitude variation the side lobe suppression reaches
−60 dB but using UNISWAP with constant amplitude sig-
nals, the sidelobes are suppressed not so much. The same is
true for crosstalk when filters are driven with not correspond-
ing signals as shown on the upper right the lower left subplots.
Thus, our goal was to regulate the possible spread of signal
amplitudes to determine the optimal suppression of sidelobes
and crosstalk at tolerable PAR values. Therefore, it was
necessary to drop the constant amplitude condition (29),
limiting the ratio of the maximum to minimum amplitude to
a selected value of b.

max
(
x∗m � xm

)
min

(
x∗m � xm

) ≤ b. (40)

These additional conditions in (40) are satisfied by the fol-
lowing signal construction:

xm = exp
(
jϕ0m

)
+ a.exp

(
jϕ1m

)
, (41)

where

ϕ0m =

 ϕm (1)...
ϕm (N )

 , ϕ1m =

 ϕm (N + 1)
...

ϕm (2N )

 ,
a =

b− 1
b+ 1

. (42)
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FIGURE 1. Comparison of side lobes and crosstalk suppression either by SWAP, UNISWAP (constant envelope), or just by optimized filters. Upper left and
lower right graphs show the signals corresponding to filters – the main lobe and sidelobes, the rest plots show signals not corresponding to filters -
crosstalk (PSL criterion N = 300, M = 2, b = 1).

FIGURE 2. Comparison of side lobes and crosstalk suppression either by SWAP, UNISWAP (constant envelope), or just by optimized filters. Upper
left and lower right graphs show the signals corresponding to filters – the main lobe and sidelobes, the rest plots show signals not corresponding
to filters - crosstalk (ISL criterion, N = 300, M = 2, b = 1).

To simplify the notation, we merge the vectors ϕ0m and ϕ1m
into the previously introduced phase vector ϕm expanded to
2N components:

ϕm =

[
ϕ0m
ϕ1m

]
. (43)

By choosing the variables ϕm (n), n = 1, 2, . . . , 2N , in the
interval 〈0, 2π〉, for each sample of themth signal, any sample

phase in the interval 〈0, 2π〉 and amplitude in the desired
range can be set. We can then write the signal optimization
as follows:

ϕm = arg
{
min
ϕm

[9m]
}

xm = exp
(
jϕ0m

)
+ a.exp

(
jϕ1m

)
(44)

108256 VOLUME 10, 2022



P. Bezoušek, S. Karamazov: Simultaneous Optimization of Mismatched Filters and Controlled Amplitude Signals

For minimization, we used the same gradient method as in the
algorithm for the constant envelope, but we now optimized
the 2N components of the newly defined vector ϕm.
To derive the gradient relation, we take advantage of the

fact that the partial derivatives of the vectors xm by the
components of the vector ϕm are sparse vectors:

∂xm
∂ϕm (n)

=

[
0, . . . , j·ejϕm(n), . . . , 0

]T
,

for n = 1, 2, . . . ,N , (45)
∂xm

∂ϕm (n)
= a.

[
0, . . . , ejϕm(n), . . . , 0

]T
,

for n = N + 1, . . . , 2N . (46)

For the gradient, we then get the relation

∇92
m
(
ϕm
)
= 2Re

{
−jx2m �

(
x2HmAm

)T}
, (47)

where x2m is a column vector with 2N components.

x2m =



ejϕm(1)
...

ejϕm(N )

a.ejϕm(N+1)
...

a.ejϕm(2N )


. (48)

Then the signal vectors xm we get using (44).

C. ALGORITHM DESCRIPTION
The entire UNISWAP optimization algorithm is summarized
in the procedure described in TABLE 1. The individual steps
of the SWAP iterations are denoted by superscript i.

TABLE 1. The UNISWAP algorithm.

The calculation of filters in step 2 based on the ISL or PSL
criteria is described in [9]. The gradient algorithm in Step 4 is
a standard algorithm that searches for optimal signals for the
given filters using an iterative method. To compute the gradi-
ent in the case of ` = 2, a computationally efficient analytical
method was used (see relations (39) and (47)). For ` = ∞,
a numerical calculation should be used. However, owing to
the aforementioned advantage of using the Euclidean metric

in the gradient algorithm, this approach was not used in the
UNISWAP algorithm.

IV. ALGORITHM EXAMINATION
The structure of the UNISWAP algorithm is based on the
commutativity of convolution. This alternates between find-
ing the optimal filters for the initial signals, and finding a
new signals for the determined filters. These two successive
computations are called one swap, where the order of the
swaps is denoted by the variable i. In the previously pub-
lished simpler SWAP algorithm, the optimization methods
used for filters and signals are the same, corresponding to
the chosen criterion; in the new UNISWAP algorithm, the
computation of the new signals is performed using a gradient
method. Although these calculations are more complex and
somewhat longer, they eliminate the main disadvantage of the
previous algorithm, which is the impossibility of controlling
the signal envelope changes through the pulse. The gradient
algorithm not only maintains the envelope constant but also
controls the ratio between the maximum and minimum sizes
of the elements of the signal vector. At each ith swap of
the UNISWAP algorithm, another iterative process of the
gradient algorithm was executed with steps denoted by r .
In each step of the gradient algorithm, a line search method
was applied to determine the appropriate step length using the
Armijo rule [21].

To demonstrate the algorithm, we chose the initial signals
with linear frequency modulation. The time-bandwidth prod-
uct of this signal is Bτ = 100, where B is the instantaneous
signal bandwidth and τ is the pulse length. Signals with
such characteristics are typically used in medium-to long-
range ground-based surveillance radar because of their low
sensitivity to the Doppler effect. These signals are frequency-
diversified (FD) in MIMO radar applications.

A. COMPARISON OF SWAP AND UNISWAP ALGORITHMS
The constant envelope of the signals (parameter b = 1,
i.e., a = 0) implies a significant tightening of the require-
ments for signal optimization compared to the original SWAP
algorithm. This results in the deterioration of side-lobe sup-
pression compared to the original algorithm. Figs. 1 and 2
present a comparison of side-lobe suppression and crosstalk
between the results of the UNISWAP algorithm at a constant
signal amplitude (PAR= 1) and the original SWAP algorithm
without amplitude constraints. Both cases used PSL and ISL
criteria. In the sample figures, we see that the suppression
in the constant envelope case (red curves) is slightly greater
than the initial values before the application of the algorithm
(black curves), but worse than when using the SWAP algo-
rithm (blue curves). A larger optimization effect (up to 7 dB)
was observed for the ISL, mainly for the nearer side lobes.
In the case of PSL, the improvement over baseline did not
depend on the time lag; however, it was only 4 dB.

In practice, a slight increase in the PAR of the transmitted
signal does not imply a large degradation of the transmit-
ter characteristics or a significant distortion of the signal.

VOLUME 10, 2022 108257



P. Bezoušek, S. Karamazov: Simultaneous Optimization of Mismatched Filters and Controlled Amplitude Signals

FIGURE 3. Comparison of algorithm results for PSL criterion. It is clearly
seen how for different values of parameter a, the curve levels are
between the SWAP (arbitrary signal amplitude) and UNISWAP (unit signal
amplitude).

FIGURE 4. Comparison of algorithm results for ISL criterion. For different
values of parameter a, the curves are again in positions between SWAP
(arbitrary signal amplitude) and UNISWAP (unit signal amplitude) levels.

However, even a small relaxation of the constant envelope
requirement allows for a further increase in the side lobe and
crosstalk suppression. The results are shown in Figs. 3 and 4.
Here, the waveforms of the signals emerging from the separa-
tion filters optimized by the UNISWAP algorithm are plotted
for several values of the parameter a = 0 to 1. As this
parameter increases from a = 0 (constant envelope signal)
to a = 1 (signal amplitude variations are not constrained at
all), the suppression of the side lobes and crosstalk gradually
improves until it approaches the results obtained using the
SWAP algorithm.

At the same time However, the PAR of the transmitted sig-
nal increases slightly from PAR = 1 to PAR < 1.2, as shown
in Fig. 5. We observed that this deterioration is very low for
both the ISL and PSL criteria. However, we observed differ-
ent behaviors in the SNR loss parameters. With the ISL crite-
rion, the loss decreases steadily with the increase in parameter
a. For the PSL criterion, it reaches a minimum at a = 0.2,
and then increases sharply to values of approximately 6 dB.
This is in contrast with our previous findings [9]. With the
SWAP algorithm the PAR for the ISL criterion deteriorates
significantly, and on the other hand, the losses stay below
2 dB in all cases. Hence, it can be concluded that the SWAP
and UNISWAP algorithms at a = 1 are not identical, but

FIGURE 5. Dependence of SNR loss and PAR for ISL and PSL criterion on
the optimization parameter a, limiting the signal amplitude spread.

FIGURE 6. Dependence of side lobe suppression (SL) on the parameter a
for both ISL and PSL criteria.

each converges to a different minimum. However, UNISWAP
provides very good results in terms of side-lobe suppression
as well as in PAR parameter values (Fig. 6). Excellent results
were obtained for SNR loss when the ISL criterion was
chosen. The side-lobe suppression changes mostly between
a = 0 and 0.4 (Fig. 6), beyond which the improvement is
insignificant, whereas the PAR value still increases slightly.
Therefore, the choice of a = 0.4 to 0.5 may be appropriate.

B. DOPPLER SHIFT EFFECT ON SIDE LOBES AND
CROSSTALK SUPPRESSION
The Doppler effect can be included in the optimization of
signals and filters by extending the minimized function to
include signals with selected Doppler shifts fd [9], [20]. The
degree of influence of the Doppler effect on the signals can
be estimated from the magnitude of the signal phase change
1φmax due to the Doppler shift along the entire pulse:

1φmax = 2π f dτ. (49)

If the phase change is1φmax � 2π , then this effect is usually
insignificant. For example, ground-based surveillance radars
(GBSR) for air traffic control (ATC) deal with targets moving
maximally at the speed of sound, and the Doppler shift of
the frequency is limited to fd < 6 kHz. The maximum
phase change is then 1φmax < 1.2π . This is probably at
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FIGURE 7. Comparison of the original signal and signal with doppler shift
fd = 5kHz for ISL optimization.

FIGURE 8. Comparison of the original signal and signal with doppler shift
fd = 5kHz for PSL optimization.

the edge of a situation where this influence can be neglected.
Figures 7 and 8 show the amplitudes of the output signals
when the received signals are affected by a Doppler shift
of 5 kHz.

In this case, without including the Doppler effect in the
optimization, the side-lobe suppression (similar to crosstalk)
is degraded by up to 25 dB; however, the suppression
remains higher than 30 dB. If we include the influence of
the Doppler effect in the optimization, the deterioration is
reduced; however, there is some deterioration for all Doppler
shifts, including the zero shift. It should be noted that the
greatest suppression of side lobes and crosstalk should be
achieved for targets with large radar cross-sections (RCS),
that is, targets that are static or moving at lower velocities.
Thus, the result of including the Doppler effect at high
velocities in the optimization is questionable.

C. EFFECT OF PARAMETER CHOICE ON CONVERGENCE
AND RESULTS OF THE UNISWAP ALGORITHM
Several parameters that affect the convergence and optimiza-
tion results can be selected for the algorithm under study.
The first is the ISL or PSL criterion. Both criteria were
used to optimize the filters. For signal optimization, this can
also be implemented by choosing the order ` of the norm.
The ISL corresponds to ` = 2 and the PSL corresponds to
` = ∞. However, experiments with the gradient algorithm

FIGURE 9. Dependence of the minimized function 8 on the number of
steps r at a given step i of the UNISWAP algorithm.

FIGURE 10. Dependence of the value of the minimized function 8 on
iteration step i of the UNISWAP algorithm.

have shown that the efficiency of this algorithm for ` > 2
decreases rapidly as ` increases and that for ` = ∞ it is
completely inefficient. Therefore, in the gradient algorithm,
we used only the norm ` = 2. The use of the ISL or
PSL criterion for the filters provides standard suppression
properties, as shown in Figs. 3 and 4. With ISL, higher
suppression of the near side lobes (|g| ≤ N /2) was achieved,
while the far-side lobes (|g| ≈ N ) remained quite high. With
the PSL criterion, the suppression of all lateral lobes and
crosstalk is the same (unless the same weights are used), but
only moderate. However, the ISL algorithm was significantly
faster than the PSL criteria.

The effect of parameter a, which limits the spread of the
signal amplitudes during the pulse, on the results was dis-
cussed in the previous section. However, this parameter also
affects the convergence speed. As the value of a increases, the
computational effort increases, which makes the computation
longer.

Figure 9 plots the values of the minimized function 82 at
the end of each step r of the gradient algorithm at the given
step i of the UNISWAP algorithm.

82
=

M∑
m=1

92
m =

M∑
µ=1

82
µ, (50)
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where

8µ =
∥∥Wµ ·3· qµ

∥∥
`
, 9m = ‖Wm·5·xm‖` . (51)

We can see that, for both criteria (ISL and PSL), the mini-
mized function 8 decreases smoothly with both increasing
r and increasing i. Understandably, the decrease is always
more significant in the first steps than in the later steps.
The graph shows that the first 30–50 steps are the most
significant.When optimizing the filters within the UNISWAP
algorithm, there is always a decrease in the function 8.
This improvement was significant only at lower values of i.
In Fig. 10, it can be observed that the difference between the
values of the minimized function for i = 8 and i = 10 for both
criteria is only approximately 0.5 dB. These findings allowed
for a reduction in the maximum number of steps.

V. CONCLUSION
In this paper, an algorithm called UNISWAP is presented
for the optimization of signals and filters in MIMO radars
with the goal of maximum suppression of time-side lobes
and crosstalk over the entire lag. It is based on alternating
filter and signal optimization, allowing the separation of
each iteration step into parallel optimizations of individual
filters or signals. This significantly reduces computational
effort and accelerates the entire procedure. Compared to the
classic WeCAN algorithm, our UNISWAP algorithm is up
to a hundred times faster in the case of the ISL criterion
(analytical calculation) and roughly thirty times faster in
the case of the PSL criterion (numerical calculation) on the
same hardware. In contrast to the previously published SWAP
algorithm, which is based on the same idea, the new algorithm
enables control of signal amplitude variations during the
pulse. It is exploited to improve the suppression of side lobes
and crosstalk by as much as 7 dB while preserving low PAR
under 1.2 and SNR loss less than 1 dB. The effect of Doppler
shift was also assumed. It is shown that even if the radial
target velocity reaches the speed of sound, the side lobe and
crosstalk suppression do not fall below –30 dB, which seems
to be sufficient in most applications.
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