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Abstract. We present a grapevine variety recognition system based on
a densely connected convolutional network. The proposed solution is
aimed, as a data processing part of an affordable sensor, at selective
harvesters. The system classifies size normalized RGB images according
to varieties of grapes captured in the images. We train and evaluate the
system on in-field images of ripe grapes captured without any artificial
lighting, both facing toward the sun and away from the sun. A dataset
created for this purpose consists of 7200 images classified into 8 cate-
gories. The system distinguishes between seven grapevine varieties and
background, where four and three varieties have red and green grapes,
respectively. We study the impact of data augmentation on classification
performance of the system. We show that it is possible to achieve average
per-class classification accuracies at 97.75±0.25 % and 98.00±0.00 % for
red and green grape varieties, respectively. The system also accurately
differentiates grapes from background. An overall average per-class accu-
racy of the system is at 98.00±0.13 %. The results show that conventional
cameras in combination with the proposed system allow construction of
affordable automatic selective harvesters.

Keywords: Recognition of grapevine varieties · Densely connected con-
volutional network · Data augmentation · In-field images · Agriculture
mechanization.

1 Introduction

Over the past few years, we have observed unprecedented progress of agricul-
ture mechanization towards its full automation. The rapid development in areas
such as computer vision and machine learning, likewise affordability of powerful
hardware and precise manipulators, allows construction of autonomous robotic
systems, e.g. for weed control [21], precise spraying [24, 3] and harvesting. Robots
capable of cropping greenhouse vegetables, apples, grapes [3], sweet peppers [1]
and even strawberries [33] have been presented. One of the directions of their
further development is selective harvesting. A good example is harvesting of
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grapevines according to their varieties. The basic prerequisite for such a selec-
tive harvester is correct recognition of grapevine varieties.

Recognition of grapevine varieties can be carried out different ways. A tra-
ditional recognition method is ampelometry [5]. As the method is visual, it is
non-destructive. However, it requires involvement of an expert with extensive
training, even when using a specialized software [23]. Accuracy of this method is
strongly dependent on skills and experience of the expert. DNA analysis [17] is
an example of a more objective approach. However, this method, as well as other
wet chemistry techniques, is destructive, time-consuming, labour-demanding and
it also requires the involvement of an expert.

Current development of computer vision methods and availability of ad-
vanced image sensors, has enabled automation of grapevine variety identification.
Methods, which process data provided by a spectrometer [6, 4] or a hyperspec-
tral camera [7], are automatic, non-destructive and time-efficient. Measurements
of an interaction of electromagnetic radiation with matter, at many different
spectral bands, allow accurate recognition of grapevine varieties. The main dis-
advantage of this approach is the high purchase price of a spectrometer or a
hyperspectral camera. Implementation of such sensors into a selective harvester
would significantly increase its price.

Traditional methods aimed at recognition of grapevine varieties are limited
by human senses. For example, ampelometry uses eyesight for the grapevine va-
riety recognition. Despite the fact that the human perceives only visible light,
mostly in three bands, experts are capable of recognizing tens of varieties. Con-
ventional cameras provide images of comparable attributes. We believe that the
images keep information, that allows the classification of grapes according to
their varieties, at the same level of accuracy.

An image-based classification of grapevines according to their varieties is
a complex task which requires extraction of many discriminative features. An
extensive diversity of an outdoor environment further increases the complexity of
the feature extraction. The overall complexity of this task requires employment
of a state-of-the-art image categorization system.

State-of-the-art image categorization systems are based on deep convolu-
tional networks (deep ConvNets) [14]. Deep ConvNets allow creation of self-
contained image categorization systems which ensure both feature extraction
and classification of object images. Key factors influencing performance of such
a system are a learning capacity of a deep ConvNet and the quality of a training
set. The capacity of the network is given by its topology. Modern topologies con-
trol the capacity by varying width or depth of networks [13]. Enlarging a deep
ConvNet capacity through increasing its width is used e.g. in GoogLeNet [27].
The second approach is to increase the number of network layers (the network
depth), while retaining the data processing linearity. Topologies, such as Highway
Networks [25], Residual Networks [9], Deep Pyramidal Residual Networks [8],
Densely Connected Convolutional Networks (DenseNets) [11] and Cross-Layer
Neurons Networks [34] can have tens to hundreds of layers.
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Factors such as selection of training samples, their correct categorization,
proportional representation of samples with respect to their categories, as well
as the total number of samples in a training set predetermine its quality [15, 30].
In the case of deep ConvNets, the amount of training data is of great importance.
Unfortunately, the relationship between classification performance and number
of samples is logarithmic [26]. Collection and categorization of a sufficiently large
set of images is thus often very time consuming, if not impossible [31, 19]. This
issue can be overcome by means of data augmentation.

Data augmentation techniques extend datasets by generating synthetic sam-
ples. In image classification tasks, the synthetic samples originate as transfor-
mations of available images. The augmentation techniques that use randomly
located crops, geometric transformations or photometric transformations are in-
tuitive and easy to implement. The simplest example of synthetic samples are
randomly located crops from original images [10, 28, 9] that are appropriate for
images with objects of interest surrounded by a background. When approximate
positions of objects are known, the transformation can be implemented as label-
preserving (existing images are transformed such that their labels are preserved)
[19]. Geometric transformation-based augmentation techniques include random
reflections, random translations, random shearing and random rotations [32, 26,
13, 31]. When properly set up, they show high likelihood of preserving labels.
Augmentation techniques based on photometric transformations adjust image
lighting and colour, and leave the geometry unchanged [29, 10, 19]. However,
for some tasks, colour is a very important distinctive feature, and the colour
transformations may discard important information. Due to the putative loss of
information, photometric transformations are not always label-preserving [19].

With respect to the aforementioned facts, we expect that automatic recog-
nition of grapevine varieties can be built on RGB images which capture grape
clusters and leaves. We propose a grapevine variety recognition system based on
a DenseNet topology. A dense connectivity pattern used in DenseNets alleviates
a vanishing-gradient problem, and allows creation of very deep networks with
high learning capacity [11]. However, the main advantage of the DenseNet topol-
ogy is proper classification performance of DesneNet based image categorization
systems trained on small datasets [31]. For training and evaluation of the sys-
tem, we form a dataset based on in-field photos captured under various lighting
conditions. To ensure high classification accuracy of the system, we propose uti-
lization of data augmentation within a training phase. We study the effect of the
augmentation on the classification performance of the system.

2 Materials and Methods

2.1 Data Collection

We captured colour photos (individual images) of common grapevine during a
harvest. The data collection was carried out within two days in the morning
and in the afternoon in August 2015. We selected various locations in vineyards
in Čejkovice, Czech Republic. We used no artificial lighting and we captured
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the photos in a direction of sunshine likewise in the opposite direction (both
days was partly sunny). The resulting collection of photos includes Welschries-
ling (WR), Saint Laurent (SL), Gewürztraminer (GT), Pinot noir (PN), Riesling
Weiss (RW), Pinot gris (PG), and Veltliner Grün (VG) varieties (names of va-
rieties according to Vitis International Variety Catalogue [16]).

We used camera bodies CANON EOS 1000D and CANON EOS 1100D with
CANON ZOOM lenses EF-S 18-55 mm f/3.5-5.6 II and IS II, respectively. Reso-
lutions of the photos are 1936×1288 pixel (px) and 4272×2848 px, respectively.
The photos use RGB colour model with 24 bits bit depth. We placed the cam-
eras perpendicular to vineyard rows (in terms of an axis of a lens), in a distance
about 1.4 m from the rows, at an altitude of 1.25 m from the ground. A focal
length varied between 18 mm and 24 mm.

2.2 Dataset

Photos acquired within the data collection include common grapevine plants
with fruit and background. Around ten grape clusters are captured in each photo
and they cover less than five percent of the image area. As we expect structures
of grape clusters and leaves to be sufficiently discriminative features for the
recognition of the varieties, we transform the photos into a dataset of RGB
images, where at least 70 % of each image is covered by a grape cluster. The
images are 120× 120 px crops from the photos. For this purpose, we randomly
select between 12 and 14 photos (depending on a density of grape clusters in
photos) of each variety. From each photo, we create dozens of unique images
(crops are carried out at different locations). For each variety, we create 900
images. Further, we create 900 images capturing a background (leaves without
grapes, sky, grass, etc.), i.e. the final dataset consists of 7200 images classified into
8 categories (Fig. 1). In Table 1, we summarize information about the number of
selected photos with respect to grapevine varieties (first column), camera bodies
(first row) and focal lengths (second row).

Table 1: Number of photos selected for forming of the dataset. For each
variety (first column), number of used photos is stated with respect to the focal
length (second row) and the camera body (first row).

camera body EOS 1000 D EOS 1100 D
focal length 18 21 24 18 23

Gewürztraminer 8 - 4 - -
Veltliner Grün 8 4 - - -

Pinot gris 8 2 - - 4
Pinot noir 8 - 4 - -

Riesling Weiss 6 - 4 4 -
Saint Laurent 12 - 0 - -
Welschriesling 10 - 4 - -
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1: Example images for the categories in the dataset: (a) Velt-
liner Grün (VG), (b) Riesling Weiss (RW), (c) Welschriesling (WR), (d)
Gewürztraminer (GT), (e) Pinot gris (PG), (f) Pinot noir (PN), (g) Saint Lau-
rent (SL), and (h) Background (BG).

2.3 Densely Connected Convolutional Networks

As in other deep ConvNets [14], convolutional, pooling and fully connected layers
are arranged in a feed-forward manner to form a DenseNet. Regular patterns
occurring in DenseNets allow us to simplify description of their topologies. Let
us define two composite building elements which will be used to describe a
topology of the presented variety recognition system: a dense blocks (DB) and a
transition layer (TL).

Dense Block Let us consider a n-th DB of dn layers that is built in a DenseNet
of L layers. The input and the output of the n-th DB are placed at in-th and
on-th levels of the network, respectively, i.e. dn = on − in + 1. Feature maps
produced at the `-th level of the network, where ` ∈ [in, on], are given as

x` = H`([xin−1, . . . ,x`−1]), (1)

where H`(·) is a non-linear transformation performed at the `-th level, xin−1 are
feature maps at the input of the n-th DB, xi for i ∈ [in, `− 1] are feature maps
produced at i-th to `− 1-th levels of the n-th DB, and [xin−1, . . . ,x`−1] denotes
concatenation of the feature maps.

Two variants of the non-linear transformation H(·) can be used in DBs: a
basic and a bottleneck version [11]. The basic version is a composite function
which consists of a batch normalization (BN) [12], a rectified linear unit (ReLU),
and a convolution (Conv) [14], respectively. Using a short notation, the basic
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version of H(·) can be written as BN-ReLU-Conv(h× w, f, s), where s is stride
of convolutional filters, f is number of the filters, and h and w are their height
and width, respectively. The bottleneck version of H(·) is defined as BN-ReLU-
Conv(1×1, 4f, 1)-BN-ReLU-Conv(h×w, f, s). If necessary, convolutions are zero-
padded to keep the feature-map size fixed. For both versions of the composite
function H(·), the parameters h,w, s, f are identical for all layers within a DB.
We use abbreviations DBa and DBb for DBs with the basic and the bottleneck
version of H(·), respectively.

Transition Layer Let us consider a TL connected at the output of the n-th
DB (i.e. the TL is placed at the (on +1)-th level of the network). The (on +1)-th
TL produces feature maps

xon+1 = Hon+1([xin−1,xin , . . . ,xon ]), (2)

where [xin−1,xin , . . . ,xon ] denotes the concatenation of all feature maps that ap-
pear in the n-th DB. Hon+1 is a composite function BN-ReLU-Conv(1×1, f, 1)-
AP(2 × 2, 2), where AP(2 × 2, 2) denotes an average pooling with pools 2 × 2
and stride 2 [11].

Compactness of the network is controlled by the number of the 1× 1 convo-
lutional filters f incorporated in TLs. The number of feature maps produced by
the (on + 1)-th TL is given as fon+1 = bθmnc, where θ is a compression factor,
θ ∈ [m−1n , 1] and mn is the number of feature maps produced by the n-th DB.

2.4 Variety Recognition System

Topology The presented variety recognition system is a DenseNet. The network
classifies RGB images of dimensions 120×120 px according to varieties of grapes
captured in the images. We control number of filters f in DBs by a variable k,
where k = 20. The network is opened by one DBa which consists of one layer
(d = 1) with 2k convolutional filters (f = 2k) with kernels of size 7 × 7 px
(h = w = 7), stride by 2 px (s = 2). The following layer is a max pooling layer
(MPL) with pools 3 × 3 px (h = w = 3) stride by 2 (s = 2). The inner parts
of the network consist of two DBbs with 6 and 9 layers, respectively. At each
layer of a DBb, k filters with kernels of size 3 × 3 px stride by 1 px ensure the
feature extraction. Each DBb in the network is followed by one TL. We set up
the compression factor θ at 0.5 for both TLs. The network is closed by a global
average pooling (GAP) and a classifier, respectively. The classifier consists of
one fully connected layer of eight neurons followed by a softmax function. The
topology of the network is summarized in Table 2.

Training and evaluation To train and evaluate the system, we randomly split
the dataset into training and validation subsets at the ratio 5:1 while keeping
balanced distribution of categories, i.e. the training and the validation subsets
consist of 750 and 150 samples of each category, respectively. On the training
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Table 2: Topology of the variety recognition system. Building elements
which form the system are listed with respect to their placement in the network
in the first row of the table (the first block is the leftmost one), where DBa
and DBb denote the basic and the bottleneck versions of the dense block; MPL
is a max pooling layer; TL is a transition layer, GAP denotes a global average
pooling, and C is used for a classifier that consists of one fully connected layer
followed by a softmax function. The parameters h and w are a height and a
width of a filter kernel or of a pool; s is stride of the kernel or of the pool; f is
the number of filters at one convolution in a dense block; and d is the number
of layers in the dense block.

DBa MPL DBb TL DBb TL GAP C

h 7 3 3 - 3 - 5 -
w 7 3 3 - 3 - 5 -
s 2 2 1 - 1 - 5 -
f 2k - k - k - - -
d 1 - 6 - 9 - - -

subset, we train the system using the ADAM optimizer [18] for 500 epochs
with mini batches of 400 samples, minimizing a cross-entropy error function
for the multiclass classification problem [2]. We set up a learning rate, and an
exponential decay rate for first and second moment estimates at 10−3, 0.95 and
0.999, respectively. We shuffle samples in the training subset every epoch.

We evaluate classification performance of the trained system on the validation
subset. We observe numbers of correctly and incorrectly classified samples. For
each category, we calculate classification accuracy of the system. For the i-th
category, it is given as

acci =
|TPi|+ |TNi|

n
, (3)

where |TPi| is the number of correctly classified samples of the i-th category,
|TNi| is the total number of correctly classified samples of complementary cate-
gories to the category i, and n is the total number of samples in the validation
subset. To evaluate performance of the system on a subset of categories I, we
calculate average per-class accuracy according to

acc =

∑
i∈I acci

|I|
, (4)

where |I| is the number of categories in the subset I [22].
As the number of samples in the training subset might be insufficient, we con-

sider training on synthetic samples to be a possible way to improve classification
performance of the system. To assess importance of the augmentation, we train
the system both with and without utilization of data augmentation. Due to a
stochastic character of the training process [20], we repeat the training-validation
process thirty times for each training approach. We carry out the experiments
in MATLAB R2020b using Deep Learning Toolbox.
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Data Augmentation In computer vision, the commonly used data augmen-
tation techniques are randomly located crops, techniques based on photomet-
ric transformations, and techniques based on geometric transformations. In our
case, the augmentation by randomly located crops cannot be used due to the
dimensions of images in our dataset (dimensions of the images match exactly
with expected dimensions of input data). As the colour of grapes is an impor-
tant distinctive feature in the recognition of grapevine varieties, photometric
transformations may be counterproductive. When properly adjusted, the geo-
metric transformations such as reflections, translations, shearing, and rotations
can ensure label-preserving data augmentation. To ensure a high likelihood of
preserving labels, selection of the transformations as well as their settings must
be based on an analysis of the dataset.

The images in the dataset capture the background, or grapes and leaves of
one of the seven recognized varieties. Leaves in the images with grapes cover only
a small part of image areas and they are always located near to image edges. As
the leaves can be an important discriminative feature, we consider translations
up to ±3 px in both directions to be label-preserving. The grapes in clusters
are arranged to form a typical triangular shape approximately symmetric with
respect to the y-axis. With respect to this fact, we consider reflections over the
y-axis to be label-preserving while reflections over the x-axis not. Further, we
estimate rotations and shears up to ±20 degree to be label-preserving.

With respect to the limit values, we use for the augmentation of the train-
ing subset, random horizontal and vertical translations (range of a translation
distance: ±3 px), random y-axis reflections, random rotations (range of a rota-
tion angle: ±20 degree), and random horizontal and vertical shears (range of a
shear angle: ±20 degree). Probability of the reflections is 50 %. The translation
distance, the rotation and the shear angles are picked randomly from a continu-
ous uniform distribution within the specified intervals. We implement the data
augmentation via a MATLAB function imageDataAugmenter.

3 Results and Discussion

We obtain 30 sets of results for each performance measure and each training
paradigm. To provide a synoptic summary of the results, we calculate arithmetic
mean and standard deviation for each measure. As the system recognizes eight
categories, we obtain 8 and 8×7 statistics for correctly and incorrectly classified
samples, respectively. We summarize the statistics for the training with and
without the augmentation in Table 3 and Table 4, respectively. We arrange the
data in a confusion matrix manner, i.e. rows and columns represent instances in
actual and predicted categories, respectively. In the last columns of the tables,
we present statistics of classification accuracies for each category (3).

The overall (I = {GT,VG,PG,PN,BG,RW,SL,WR}) average per-class ac-
curacy (4) of the system trained with the augmentation (Table 3) is at 98.00±
0.13 %. When considering only the red (I = {GT,PG,PN,SL}) and the green
grape varieties (I = {VG,RW,WR}), we get average per-class accuracies at
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Table 3: Evaluation results for the system trained with the data aug-
mentation. The table shows arithmetic means and standard deviations of the
performance measures. The statistics are organized in the confusion matrix man-
ner. Rows and columns represent instances in actual and predicted categories,
respectively. Average per-class accuracies of the categories are summarized in
the last column. Distinguished categories are Gewürztraminer (GT), Veltliner
Grün (VG), Pinot gris (PG), Pinot noir (PN), background (BG), Riesling Weiss
(RW), Saint Laurent (SL), and Welschriesling (WR).
i GT VG PG PN BG RW SL WR acci

GT 145.63 ± 3.21 0.10 ± 0.31 2.50 ± 2.56 0.80 ± 1.00 0.53 ± 0.90 0.10 ± 0.31 0.23 ± 0.63 0.10 ± 0.31 0.99 ± 0.00
VG 0.03 ± 0.18 137.57 ± 5.81 0.00 ± 0.00 0.00 ± 0.00 0.57 ± 0.73 4.60 ± 3.46 0.00 ± 0.00 7.23 ± 3.22 0.98 ± 0.00
PG 2.33 ± 1.83 0.00 ± 0.00 141.23 ± 3.37 3.30 ± 2.01 0.10 ± 0.40 0.07 ± 0.25 2.97 ± 1.83 0.00 ± 0.00 0.98 ± 0.00
PN 1.23 ± 1.36 0.07 ± 0.25 3.63 ± 1.90 128.20 ± 6.69 0.57 ± 0.63 0.00 ± 0.00 16.30 ± 5.71 0.00 ± 0.00 0.97 ± 0.00
BG 0.83 ± 0.95 1.10 ± 0.99 1.70 ± 1.78 1.13 ± 1.17 141.63 ± 3.61 1.70 ± 1.37 1.27 ± 1.46 0.63 ± 1.03 0.99 ± 0.00
RW 0.00 ± 0.00 6.50 ± 2.58 0.00 ± 0.00 0.00 ± 0.00 2.17 ± 1.76 136.00 ± 3.81 0.00 ± 0.00 5.33 ± 2.47 0.98 ± 0.00
SL 0.37 ± 0.61 0.00 ± 0.00 2.37 ± 1.27 11.80 ± 3.46 0.63 ± 0.72 0.10 ± 0.40 134.73 ± 4.06 0.00 ± 0.00 0.97 ± 0.01
WR 0.23 ± 0.57 9.33 ± 5.01 0.00 ± 0.00 0.00 ± 0.00 0.37 ± 0.72 6.07 ± 3.12 0.03 ± 0.18 133.97 ± 6.37 0.98 ± 0.00

Table 4: Evaluation results for the system trained without the data
augmentation.
i GT VG PG PN BG RW SL WR acci

GT 137.20 ± 4.69 0.17 ± 0.38 5.70 ± 3.51 2.43 ± 2.24 2.23 ± 1.63 0.07 ± 0.25 1.73 ± 1.31 0.47 ± 0.78 0.98 ± 0.00
VG 0.03 ± 0.18 123.27 ± 8.79 0.23 ± 0.56 0.07 ± 0.25 1.63 ± 1.19 7.47 ± 3.42 0.20 ± 0.41 17.10 ± 6.29 0.96 ± 0.01
PG 5.47 ± 2.75 0.23 ± 0.43 121.67 ± 6.58 9.37 ± 4.44 2.27 ± 1.80 0.17 ± 0.46 10.10 ± 4.26 0.73 ± 1.11 0.95 ± 0.01
PN 3.23 ± 2.14 0.17 ± 0.46 9.40 ± 2.71 108.33 ± 7.61 2.43 ± 2.14 0.10 ± 0.31 26.00 ± 7.74 0.33 ± 0.55 0.93 ± 0.01
BG 1.90 ± 1.56 2.97 ± 1.83 1.87 ± 1.53 2.43 ± 1.61 132.67 ± 5.79 3.97 ± 3.30 2.33 ± 1.88 1.87 ± 1.17 0.97 ± 0.01
RW 0.10 ± 0.40 10.23 ± 4.25 0.20 ± 0.41 0.10 ± 0.31 3.00 ± 2.05 126.97 ± 6.52 0.10 ± 0.31 9.30 ± 4.39 0.96 ± 0.01
SL 1.93 ± 1.55 0.27 ± 0.45 9.40 ± 4.28 23.13 ± 6.39 2.93 ± 1.78 0.13 ± 0.35 111.47 ± 9.26 0.73 ± 1.08 0.93 ± 0.01
WR 0.13 ± 0.35 12.20 ± 4.50 0.83 ± 1.12 0.40 ± 0.56 1.50 ± 1.17 9.23 ± 3.87 0.27 ± 0.53 125.43 ± 5.92 0.95 ± 0.01

97.75 ± 0.25 % and 98.00 ± 0.00 %, respectively. The system accurately distin-
guishes between grapes and background (8.37± 3.61 from 150 samples of back-
ground miss classified as grapes, and 4.93±2.72 from 1050 samples of grapes miss
classified as background). We also observe that confusions occur almost exclu-
sively among grapes of the same colour (0.53±0.68 samples of red grape varieties
classified as a green variety, and 0.30±0.70 samples of green grape varieties classi-
fied as a red variety). The system best recognizes Gewürztraminer (145.63±3.21
from 150 samples of Gewürztraminer classified correctly, and only 5.03 ± 2.92
from 1050 samples of other categories miss classified as Gewürztraminer). With
only 128.20±6.69 correctly classified samples from 150, we consider Pinot noir to
be the most difficult variety for the system trained with the data augmentation.
False positive classification of this variety is 17.03 ± 4.73 from 1050 samples of
other categories.

For the system trained without the data augmentation (Table 4), we ob-
tain overall average per-class accuracy at 95.38 ± 0.88 %. For the red and the
green grape varieties, we get average per-class accuracies at 94.75± 0.75 % and
95.67 ± 1.00 %, respectively. We can say that the system, trained without the
data augmentation, relatively accurately distinguishes between grapes and back-
ground (17.33± 5.79 from 150 samples of background miss classified as grapes,
and 16.00 ± 5.51 from 1050 samples of grapes miss classified as background).
Also, in this case, confusions occur almost exclusively among grapes of the same
colour (3.57±2.86 samples of red grape varieties classified as a green variety, and
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2.67± 1.56 samples of green grape varieties classified as a red one). The system
trained without the augmentation best recognizes Gewürztraminer (137.20±4.69
samples from 150 classified correctly, and 12.80±4.66 from 1050 samples of other
categories miss classified as Gewürztraminer). The most difficult variety is again
Pinot noir (108.33± 7.61 samples from 150 classified correctly, and 37.93± 9.83
from 1050 samples of other categories miss classified as Pinot noir).

All the results presented so far indicate that training of the system with the
data augmentation, results in better classification performance. The significance
of the augmentation is best apparent when comparing the numbers of correctly
classified samples obtained for the system trained with and without the data aug-
mentation. Let the absolute difference between the numbers of correctly classified
samples is for the i-th category given as

∆|TPi| = |TP+
i | − |TP−i |, (5)

where |TP+
i | and |TP−i | are numbers of correctly classified samples of the i-

th category for the system trained with and without the data augmentation,
respectively. The relative difference is for the i-th category given as

δi =
∆|TPi|
|Pi|

, (6)

where |Pi| is the number of samples of the i-th category in the training subset.
In Table 5, we state for each category (first row) arithmetic means and standard
deviations of the absolute (5) and relative (6) differences (second and third row,
respectively).

Table 5: Differences between the numbers of correctly classified samples
resulting from utilization of different training paradigm. The absolute
(second row) and the relative (third row) differences between correct classifica-
tions of the system trained with and without the augmentation with respect to
the categories (first row).

i GT VG PG PN BG RW SL WR

∆|TPi| 8.43 ± 6.22 14.30 ± 10.13 19.57 ± 7.79 19.87 ± 11.39 8.97 ± 7.39 9.03 ± 7.10 23.26 ± 10.19 8.53 ± 9.07
δi 5.62 ± 4.15 9.53 ± 6.75 13.04 ± 5.19 13.24 ± 7.59 5.98 ± 4.93 6.02 ± 4.74 15.51 ± 6.80 5.69 ± 6.04

As shown by the results in Table 5, the data augmentation improves the
correct classification for all categories by up to 15.51 ± 6.80 % (Saint Lauren).
Thanks to the data augmentation, the average number of correctly classified
samples (the main diagonal of the confusion matrix in Table 3) is, for some
categories, close to the maximum (150 samples per category). Considering all
these facts, we conclude that precise automatic recognition of grapevine varieties
based on RGB images is possible; however, training with the data augmentation
is essential to develop an accurate grapevine variety recognition system.
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4 Conclusion

We show that in-field colour images of ripe grapes acquired by a conventional
camera can be used for classification of grapevines according to their varieties.
The presented variety recognition system is capable of distinguishing between
seven grapevine varieties, where four and three varieties have red and green
grapes, respectively. The system also accurately differentiates grapes from their
background. When trained with the data augmentation, the overall average per-
class accuracy of the system is at 98.00 ± 0.13 % on images captured without
any artificial lighting. Considering all these facts, we conclude that the proposed
solution allows construction of affordable automatic selective harvesters.
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A., Hočevar, M., Oberti, R., Armada, M., Ulbrich, H., Baur, J., Debilde,
B., Best, S., Evain, S., Gauchel, W., Hellström, T., Ringdahl, O.: CROPS:
clever robots for crops. Engineering & Technology Reference 1(1) (2015).
https://doi.org/10.1049/etr.2015.0015

4. Fernandes, A., Utkin, A., Eiras-Dias, J., Silvestre, J., Cunha, J., Melo-Pinto, P.:
Assessment of grapevine variety discrimination using stem hyperspectral data and
adaboost of random weight neural networks. Applied Soft Computing 72, 140 –
155 (2018). https://doi.org/https://doi.org/10.1016/j.asoc.2018.07.059

5. Galet, P.: A Practical Ampelography: Grapevine Identification. Comstock Pub.
Associates, Ithaca, N.Y, 1 edn. (1979)

6. Gutiérrez, S., Tardaguila, J., Fernández-Novales, J., Diago, M.: Data mining and
nir spectroscopy in viticulture: Applications for plant phenotyping under field con-
ditions. Sensors (Switzerland) 16(2) (2016). https://doi.org/10.3390/s16020236

7. Gutiérrez, S., Fernández-Novales, J., Diago, M.P., Tardaguila, J.: On-the-go hy-
perspectral imaging under field conditions and machine learning for the clas-
sification of grapevine varieties. Frontiers in Plant Science 9, 1102 (2018).
https://doi.org/10.3389/fpls.2018.01102
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