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Abstract: This review summarizes recent applications of copper or copper-based compounds as a
nonprecious metal catalyst in N-nucleophiles-based dehalogenation (DH) reactions of halogenated
aromatic compounds (Ar-Xs). Cu-catalyzed DH enables the production of corresponding nonhalo-
genated aromatic products (Ar-Nu), which are much more biodegradable and can be mineralized
during aerobic wastewater treatment or which are principally further applicable. Based on available
knowledge, the developed Cu-based DH methods enable the utilization of amines for effective
cleavage of aryl-halogen bonds in organic solvents or even in an aqueous solution.

Keywords: amine; amination; arylation; halogenated aromatic compounds; aryl halide; dehalogenation;
C-N cross-coupling

1. Introduction

Ar-Xs are technologically important inert low-cost solvents (chlorobenzene or
o-dichlorobenzene) and intermediates for the manufacture of flame-retardant polymers
used in electronics and furniture. Furthermore, Ar-Xs are the chemicals necessary for the
production of industrially important dyes, pigments, and a broad group of biologically
active species such as pesticides and drugs. Ar-Xs are even directly used as biocides
(2,4,6-tribromophenol used as a wood preservative or fungicide, Triclosan or Triclocarban
used as antibacterial agents, chlorhexidine or chloroxylenol used as disinfectants, etc. [1]).
On the other hand, Ar-Xs are common xenobiotics resistant to biodegradation, often exhibit
considerable toxicity, and have long been regarded as a significant source of environmental
pollution [2]. The presence of Ar-Xs in effluent discharges is of increasing interest due to
the ecological effects and possible negative impact on public health [2].

Utilization of Ar-Xs as arylating agents based on Cu-catalyzed substitution of bound
halogen (X) applying different nucleophiles serves as the technique for production of a
broad scale of useful chemicals such as aromatic amines, ethers, phenols or sulfides, and
alkylated or arylated aromatic compounds via Ullmann and Ullmann-like reactions [3,4]:

Ar-X + NuH→ Ar-Nu + HX; NuH = nucleophiles

Besides the above-mentioned, the substitution of halogen(s) bound in Ar-Xs serves as
an effective treatment method for degradation of low polar and persistent Ar-Xs, convert-
ing them to Ar-Nu, non-halogenated and commonly more biodegradable and less toxic
products (Scheme 1). In addition, completely dehalogenated compounds are suitable as a
high-quality source of energy because they are not precursors for the formation of toxic
polychlorinated biphenyls, dibenzo-p-dioxins and respective polyhalogenated dibenzofu-
rans (PCDD/Fs) during incineration (Scheme 1, undesirable reaction pathways) [2]. The
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supposed source of waste aryl halides for described dehalogenation typically represents
distillation residues from organic fine chemical production sites or halogenated residues
produced by electronic waste recycling. Inorganic halides soluble in water are the sole
non-toxic by-products of this process.
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Scheme 1. The proposed addition of N-nucleophiles could significantly minimize the formation of
highly toxic halogenated PCDD/Fs-like products during the dehalogenation of Ar-Xs.

Abundant nonprecious transition metals such as copper exhibit interesting catalytic
activity in the activation of Ar-Xs for Csp2-X cleavage accompanied by substituting the
halogen [3–10]. This is permitted due to the easily accessible and reasonable stability of
Cu(0), Cu(I), Cu(II) and Cu(III) oxidation states. Mainly Cu(I) salts are used as the sources
of active Cu-based catalysts formed in situ during the co-action of auxiliary ligands [3–10].

Recent developments in the area of copper-catalyzed C-O cross-coupling and C-C
homo-coupling reactions of Ar-Xs producing biaryls, ethers and phenols were described in
the previous review [4]. The Cu-catalyzed conversion of Ar-Xs to biaryls, phenols or aryl
ethers is an effective method for Csp

2-X bond cleavage; however, it could be an incidental
source of undesirable halogenated biphenyls and PCDD/Fs [5], Scheme 1 (undesirable
reaction pathways).

The simplest solution for minimizing the risk of potential PCDD/Fs formation during
Csp

2-X substitutions, caused by the action of O-nucleophiles, is the utilization of another
effective nucleophilic agent(s). This paper highlights recent developments for Ar-X amina-
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tion based on Cu-catalyzed nucleophilic substitutions published from 2000 to the end of
2021 and abstracted by Web of Science.

This review is focused exclusively on the area of the potential application of metal
catalysts based on cheap, low toxic and abundant copper for dehalogenation (DH) via
facile aryl-halogen bond scission caused by N-based nucleophilic displacements (Scheme 2).
Therefore, this review does not describe tandem reactions comprising C-X cross-couplings
with partitions of adjacent groups in subsequent cyclization reactions.
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2. History and Modern Trends in Cu-Catalyzed Ar-Xs Transformations with Amines

Ar-X-based N-arylation of organic amines or amides (Ullmann-Goldberg reactions)
is a widely used transformation in chemical synthesis because it allows access to a wide
group of dyes, pigments, and biologically active and/or pharmacologically significant
compounds [6–9].

In 1906, Irma Goldberg published an arylation of aniline with 2-bromobenzoic acid
catalyzed by copper [10], Scheme 3.
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Scheme 3. Cu-catalyzed debromination of 2-bromobenzoic acid accompanied by arylation of aniline [10].

Such copper-mediated cross-coupling reactions have many industrial applications,
including the synthesis of intermediates and fine chemicals for pharmaceutical and polymer
chemistry. However, Cu-catalyzed couplings have not been employed to their full potential
for a long time.

Until 2000, the main drawbacks of Cu-catalyzed Ullmann-type C-X coupling reac-
tions between Ar-Xs and nucleophiles were the harsh reaction conditions (several hours at
temperature as high as 210 ◦C), the need for stoichiometric use of copper or its salts and
the utilization of polar solvents. According to the requirements of organic chemists, the
Cu-catalyzed C-N couplings had poor functional group compatibility and poor reaction effi-
ciency. As a result, Pd-based catalysis achieved major development enabling C-N couplings
at even ambient temperature using a catalytic quantity of Pd-based catalyst [11–13].

However, taking into account the price of noble palladium and its toxicity, abundant,
cheaper and more sustainable C-N coupling catalysts are being sought, such as Ni- or
Cu-based catalytic systems [14–22].

Both radical and ionic processes were proposed or even proved for Cu-based
C-N coupling catalysis involving the effects of Cu(I), Cu(II) and even Cu(III) oxidation
states [3,14,16,22].

The mechanism of Cu-catalyzed amination of Ar-Xs is explained most often by oxida-
tive addition (OA) of Ar-X into the LCu(I)-Nu complex producing LCu(III)XAr intermedi-
ate. This LCu(III)XAr decomposes via reductive elimination (RE) producing Ar-Nu and
LCu(I)X [22], Scheme 4.
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The third, alternative reaction mechanism is based on the nucleophilic aromatic substi-
tution of halogen in π-complex formed from Cu-ligand and Ar-X [23], Scheme 5.
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Modern trends in organic chemistry, such as the sustainable chemistry principles,
motivate more environmentally friendly methodologies based on the application of catalytic
amounts of copper catalyst. This requirement was fulfilled mainly by applying auxiliary
ligands for control of the coordination environment of the used Cu-species [24–26].

Recently, “ligand free” reaction conditions have been mentioned for the C-N cross-
couplings catalyzed by Cu-based compounds [14].

However, with high probability, a used solvent or base may act as a spare ligand
in these cases. Guo et al. and Choudary et al. supposed that using a combination of
Cu(I) source and K3PO4 as the base or calcium phosphate as the support, the phosphate
group is able to chelate Cu(I) which subsequently assisted the oxidative addition to the Cu
center [27,28].

Monnier and Taillefer adverted to lower the reproducibility of such “ligand-free”
reaction systems in particular by applying scale-up compared with ligand-based reaction
systems [14].
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Next to used ligands, the solvents have a significant role to play in the overall sustain-
ability of the chemical processes [29].

Green pathways involving reactions performed in biobased renewable solvents, non-
volatile ionic liquids, or polyethylene glycols were utilized to replace the harmful, some-
times even carcinogenic, volatile organic solvents produced from crude oil [29–31].

Dimethyl sulfoxide (DMSO) is a well-known non-toxic polar aprotic solvent pro-
duced from a by-product of the papermaking industry, dimethyl sulphide. DMSO is
a green replacement for harmful amides such as N-methylpyrrolidone (NMP) or N,N-
dimethylformamide (DMF) used as common polar aprotic solvents [32,33].

However, it must be mentioned that the application of DMSO is not compatible
with a variety of copper salts, halides or bases at high temperatures which can cause
decomposition of DMSO and pose a potential explosion hazard [34].

2.1. Cu-Catalyzed Substitution of Halogen in Ar-Xs with NH3

Simple amination of aryl halides using ammonia catalyzed by Cu(I) was extensively
studied using polar aprotic (DMF or DMSO) or polar protic (EtOH, ethylene glycol,
polyethylene glycol) solvents, different bases (Cs2CO3, K2CO3, K3PO4) and a broad spec-
trum of ligands (Figure 1) [35–37].

The published Cu-catalyzed methods applied NH3, NH4Cl, NH4OH, acetamidine,
amices or amino acids as a source of nucleophiles, in addition to different types of ligands
(Figure 1) or even ligandless procedures [38–53], see Scheme 6 and Tables 1 and 2. In most
cases, only aryl bromides and iodides are applicable for Cu amination. Aryl chlorides are
quite inert toward this type of Cu-catalyzed cross-couplings in most cases [35–44]. The
most effective oxamide-based ligands, N-(naphthalen-1-yl)-N-alkyl oxalic acid diamides
(MNFMO or NFMO), were found to achieve high turnovers (complete C-N cross-coupling
with only 0.1 mol.% Cu2O and ligand) [44]. These ligands achieved 10,000 turnovers in
cases of cross-coupling aryl bromides and iodides with ammonia [44].
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Table 1. Cu-catalyzed amination of (hetero)aryl halides using NH3, NH4Cl, acetamidine or valine.

(Hetero)Aryl Halide
(Ar-X) Added Catalyst

Added
Ligand
(mol.%)

Base/Solvent Reaction Conditions Yield (%) Ref.

Bromopyridines or
iodobenzene

Cu2O or Cu/CuCl
(0.5 wt.%) no 8 M NH3 in

HOCH2CH2OH
80 ◦C/16 h in

autoclave flushed Ar 62–99 [38]

Subst.
2-bromopyridines

Cu2O
(2 mol.%) no HOCH2CH2OH

saturated with NH3

100 ◦C/24 h in
autoclave 54–82 [39]

4-bromo-
acetophenone

CuI (equimolar
quantity to

substrate) or Cu
powder (20 mol.%)

no
27 wt.% NH3 in H2O

+ 6 M NH3 in
HOCH2CH2OH (3:5)

flushed with N2
85 ◦C/8–12 h
(0.3–1.2 MPa)

77–86 [40]

Subst. Bromo- and
iodobenzenes

(chlorobenzenes do
not react)

CuI (equimolar
quantity to

substrate) + Cu
powder (20 mol.%)

no

27 wt.% NH3 in H2O
+ 6 M NH3 in

HOCH2CH2OH
(3:5)

flushed with N2
50–85 ◦C/8–16 h

(ambient pressure)
37–85 [40]

3- and 4-subst.
Iodobenzenes

(2-iodo- with low
conversion)

CuI
(10 mol.%)

L-proline
(20 mol.%)

1 eq. NH4Cl + 3 eq.
K2CO3 DMSO +

5 vol.% H2O

Under Ar
25 ◦C/12 h 32–98 [48]

3- and 4-subst.
iodobenzenes

(2-iodo- with low
conversion)

CuI
(20 mol.%)

L-proline
(40 mol.%)

1.5 eq. 28% aq.
NH4OH

+ 3 eq. K2CO3 +
DMSO

Under Ar
25 ◦C/24 h 77–97 [48]

Iodoanilines CuI
(10 mol.%)

L-proline
(20 mol.%)

1.2 eq. of
acetamidine.HCl 2–3

eq. Cs2CO3
In DMF

Under N2
110–120 ◦C/10 h 64–92 [49]

Subst. bromo- and
iodobenzenes (Ar-Cls

do not react)

CuI
(20 mol.%) no 1.2 eq. of valine 1.5

eq. Cs2CO3 in DMSO

(a) 90 ◦C/24 h
under Ar

(b) 90 ◦C/24 h
under O2

28–90 [41]

Simple “ligand-free” protocols for converting different aryl bromides or aryl iodides to
the corresponding anilines were published in a paper by Guo et al. and utilized powdered
copper or CuI, mixed and heated with ammoniacal aqueous ethylene glycol [40]. As proved,
ethylene glycol functions as both solvent and ligand for the in situ formation of active
Cu-catalyst [40]. However, this amination was not observed with aryl chlorides (Table 1).

Using the appropriate oxalic acid diamides such as BPhTolO (Figure 1) in 5 mol.%
loading together with 5 mol.% CuI, even the amination of non-activated aryl chlorides
takes place at higher temperatures in DMSO (Table 2) [45,46].

The mechanism of these highly active oxalic acid diamides was studied by Morarji
and Gurjar [3]. Based on DFT calculations and UV-VIS/cyclic voltammetry measurements,
the mechanism of Ar-Cls amination catalyzed by Cu-oxalamides is not based on the most
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often mentioned oxidative addition of Ar-X into the LCu(I)-Nu with subsequent reductive
elimination producing Ar-Nu and LCu(I)X.

Table 2. Cu-catalyzed amination of (hetero)aryl halides using NH3 or NH4OH.

(Hetero)Aryl
Halide (Ar-X)

Added
Catalyst

Added Ligand
(mol.%) Base/Solvent Reaction

Conditions Yield (%) Ref.

Subst.
bromobenzenes

CuI
(20 mol.%)

4-OH-L-proline
(40 mol.%)

aq. NH4OH + DMSO
(1:2)

50 ◦C/24 h
under N2

55–92 [50]

Subst. bromo- and
iodobenzenes

Cu(acac)2
(10 mol.%)

Acac
(40 mol.%)

2 eq. Cs2CO3
aq.NH4OH/DMF

(0.6:4)

70–90 ◦C/24 h
under N2

23–99
(23% ortho-

subst.)
[51]

Subst. Ph-Br
(chlorobenzenes do

not react)

CuBr
(10 mol.%)

THQMeProne
(20 mol.%)

2.5 eq. K3PO4
5 eq. aq.NH4OH in

DMSO

110 ◦C/24 h
under Ar

52–95
(52% ortho) [52]

Subst.
iodobenzenes

CuBr
(5 mol.%)

THQMeProne
(10 mol.%)

2.5 eq. K3PO4
5 eq. aq.NH4OH in

DMSO

25 ◦C/24 h
under Ar

27–95
(27% ortho) [52]

Brominated
N-heterocycles

Cu(acac)2
(5 mol.%) no 1 eq. K3PO4

20 eq. NH3/DMF
90 ◦C/24 h
under N2

48–88 [42]

Subst. bromo- and
iodobenzenes,
NO2-chloro-

benzenes

CuI
(1 mol.%)

AA
(1 mol.%) NH3 (l) 100 ◦C/18 h in

autoclave 63–99 [53]

Bromobenzenes CuI
(10 mol.%)

DMEDA
(15 mol.%)

27 wt.% NH3 in
H2O/DMSO

(3:1)

130 ◦C/6–18 h
in autoclave
flushed Ar

84–96 [43]

Bromobenzenes CuI
(10 mol.%) no

27 wt.% NH3 in
H2O/PEG300

(3:1)

130 ◦C/12–24 h
in autoclave
flushed Ar

85–99 [43]

Subst. bromo- and
iodobenzenes

Cu2O
(0.1 mol.%)

Ar-Br: MNFMO
(0.1 mol.%)

Ar-I: NFMO
(0.1 mol.%)

1.3 eq. KOH + 27 wt.%
NH3 in H2O + EtOH

(2:1)

Ar-Br:
80 ◦C/24 h

Ar-I:
60 ◦C/24 h
Under Ar

64–98 [44]

Subst.
Chlorobenzenes
and chlorinated

heterocycles

CuI
(5 mol.%)

BPhTolO
(5 mol.%)

1.1 eq. K3PO4
2 eq. aq.NH4OH in DMS

110–120 ◦C 24 h
Under Ar 60–95 [45]

According to their findings, based on in situ FTIR and 1H NMR measurements Cu(I)
coordinates through both carbonyls from oxalamide, and the corresponding copper com-
plex LCu(I)Nu is the most favorable intermediate of this C-N coupling proceeding via
outer-sphere single electron transfer (SET) pathway (Schemes 7 and 8).

Catalysts 2022, 12, x FOR PEER REVIEW 6 of 31 
 

 

 
 

 

 
  

   

Figure 1. Structures of ligands applicable for converting aryl halides to the corresponding anilines 

[35–37,44–46,50]. 

The mechanism of these highly active oxalic acid diamides was studied by Morarji 

and Gurjar [3]. Based on DFT calculations and UV-VIS/cyclic voltammetry measurements, 

the mechanism of Ar-Cls amination catalyzed by Cu-oxalamides is not based on the most 

often mentioned oxidative addition of Ar-X into the LCu(I)-Nu with subsequent reductive 

elimination producing Ar-Nu and LCu(I)X. 

According to their findings, based on in situ FTIR and 1H NMR measurements Cu(I) 

coordinates through both carbonyls from oxalamide, and the corresponding copper com-

plex LCu(I)Nu is the most favorable intermediate of this C-N coupling proceeding via 

outer-sphere single electron transfer (SET) pathway (Schemes 7 and 8).  

 

Scheme 7. Proposed single electron transfer (SET) mechanism for arylation catalyzed Cu(I)/ox-

amides [3]. 
Scheme 7. Proposed single electron transfer (SET) mechanism for arylation catalyzed Cu(I)/oxamides [3].



Catalysts 2022, 12, 911 8 of 30Catalysts 2022, 12, x FOR PEER REVIEW 7 of 31 
 

 

 

Scheme 8. Proposed catalytically active Cu(I) species taking part in the amination of Ar-Cls using 

oxalic acid diamide BTMPO [3]. 

Similarly, using primary amides of general formula R1CONH2 and Cu2O/BTMO, ef-

fective arylation with aryl chlorides is available [47], Scheme 9. 

 

Scheme 9. Arylation of NH3 and amides using aryl chlorides catalyzed by Cu(I)/oxalamide com-

plexes [45,47]. 

Instead of a harmful polar aprotic solvent such as DMF or toxic polar protic ethylene 

glycol, more sustainable biobased DMSO or low-toxicity alcohols such as ethanol or pol-

yethylene glycols (PEGs) were used in many cases together with cheap bases such as 

K3PO4, KOH or K2CO3 in published methods (Tables 1 and 2). The most expensive ingre-

dient, auxiliary ligand, seems to still be an essential component for efficient conversion of 

tested aryl halides including aryl chlorides to the corresponding anilines in most cases. 

The possible recycling of used ligands, especially those based on oxalic acid diamides, is 

necessary for the potentially broad application of this type of dehalogenation method. 
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oxalic acid diamide BTMPO [3].

Similarly, using primary amides of general formula R1CONH2 and Cu2O/BTMO,
effective arylation with aryl chlorides is available [47], Scheme 9.
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Scheme 9. Arylation of NH3 and amides using aryl chlorides catalyzed by Cu(I)/oxalamide com-
plexes [45,47].

Instead of a harmful polar aprotic solvent such as DMF or toxic polar protic ethy-
lene glycol, more sustainable biobased DMSO or low-toxicity alcohols such as ethanol
or polyethylene glycols (PEGs) were used in many cases together with cheap bases such
as K3PO4, KOH or K2CO3 in published methods (Tables 1 and 2). The most expensive
ingredient, auxiliary ligand, seems to still be an essential component for efficient conversion
of tested aryl halides including aryl chlorides to the corresponding anilines in most cases.
The possible recycling of used ligands, especially those based on oxalic acid diamides, is
necessary for the potentially broad application of this type of dehalogenation method.

2.2. Cu-Catalyzed Substitution of Halogen in Ar-Xs with Primary and Secondary Amines

Instead of ammonia and its mentioned substitutes, a broad range of other nitrogen
nucleophiles including aliphatic and aromatic amines, N-heterocycles, or amino acids can
be used for the amination of Ar-Xs (Scheme 10). Interestingly, it was observed that amides
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and electron-rich azoles (pyrrole, imidazole or pyrazole) are more reactive than other amine
substrates [54,55]. The observed increased reactivity of azoles and amides may be due to
the faster reaction rates of Cu-azolate or Cu-amidate complexes in oxidative additions of
Ar-Xs compared to other Cu-amino complexes, or due to the higher acidity of azoles and
amides compared with other aliphatic or aromatic amines. On the other hand, more acidic
polyazoles such as tetrazole exhibit low reactivity toward Cu-catalyzed C-N cross-coupling,
likely due to their distinctive acidity and low N-nucleophilicity [54].
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Scheme 10. Arylation of different primary or secondary amines [6–10,14–28,46,51,54–71].

Buchwald’s research group developed polyamine-based ligands such as 1,2-diamines
(N,N′-dimethylethane-1,2-diamine (DMEDA) or trans-N,N′-dimethylcyclohexane-1,2-diamine,
DMCHDA) and (substituted) phenanthroline [56–59], Figure 2, Scheme 10.
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Figure 2. N,N-bidentate nucleophiles effective for Cu-catalyzed C-N cross-coupling [22,56–59].

DMEDA or DMCHDA were utilized together with CuI/K3PO4 for effective arylation
of indoles using Ar-I and Ar-Br in boiling toluene [57].

In particular, DMCHDA was recognized as a very powerful ligand for arylation of
azoles and diazoles in boiling toluene using CuI/K3PO4 as the commonly available reagents
and applying Ar-I or even Ar-Br [56,57]. Aryl bromides Ar-Br were used for arylation of
indazoles. However, the regioselectivity of N-1 arylation was significantly lower due to the
slow oxidative addition of Ar-Br to the Cu-indazole complex, which is rearranged from
the initially formed N-1 to the N-2 regioisomer [56]. Authors applied halide exchange
protocols for converting Ar-Br to Ar-I [60–62] by using the action of NaI/CuI/diamine in
boiling toluene for straightforward arylation of indazoles.

4,7-Dimethoxy-1,10-phenanthroline (DiMeOphen, Figure 2) was developed as a su-
perior ligand for arylation of substituted imidazoles and benzimidazoles under relatively
mild conditions [58,59].

Several in situ-produced enamine, oxime and hydrazone-based Cu(I) complexes
(Figure 3) were described as highly effective for reactions between Ar-Xs and different
electron-reach azoles even in boiling acetonitrile in co-action of Cs2CO3 at approximately
82 ◦C [63–65]. Additionally, salicylaldehyde-based oxime (SAO) or hydrazide (SAH) are
simply available and cheap ligands that produce air-stable Cu(I)complexes and catalyze
smoothly-described reactions of Ar-I and Ar-Br substituted with both electron-donating
and electron-withdrawing functional groups.
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Figure 3. Imine, oxime or hydrazone-based ligands applicable for the production of air-stable
Cu-catalysts [14,35,46,63–65].

Some amino acids such as proline or N,N-dimethylglycine were proved as effective
bidentate auxiliary ligands for Cu-catalyzed C-N cross-couplings [66,67]. Besides the above-
mentioned, amino acids possessing the primary amino group are simply arylated using
both Ar-I and Ar-Br [65,66,68].

Generally, alkyl amines are more reactive in Cu-catalyzed N-arylation than anilines
due to the stronger coordinating ability of the alkyl amine nitrogen compared to that of
the aniline [23,54,69]. Using L-proline or N,N-dimethylglycine as the ligands, arylation
of alkyl amines occurred at significantly lower temperatures compared with arylation of
anilines [23].

Even at room temperature, the Cu-based C-N couplings were observed. Shafir
and Buchwald described smooth C-N coupling of Ar-I and primary along with several
secondary amines catalyzed with Cu(I) complexes produced in situ from CuI CuI (5%)
and oxime-based ligand THQO, or 1,3-diketone-derived ligands CHXMK and CHXPrK
(Figure 4). The mentioned room-temperature C-N coupling was performed in DMF us-
ing Cs2CO3 base within 2–4 h time period [69]. However, using aryl bromides, above
mentioned arylation proceeds at 90 ◦C. Ar-Cls are inert toward tested amination. Two
1,3-dicarbonyl compounds-based ligands such as EtOCHXCARB or DPyPDON (Figure 4)
were recognized as effective for Cu-catalyzed cross-coupling of different aromatic N-
heterocycles and cyclic amide (pyrrolidone) with aryl iodides at mild reaction condi-
tions [70,71]. Xi et al. prepared a catalytically active Cu-based complex via in situ reaction
of 1,3-diketone DPyPDON and CuI for arylation of imidazoles by aryl bromides [70].
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Figure 4. Structures of highly active 1,3-diketone-based ligands [69–71].

Cross-coupling of bulky aliphatic amine-based cross-partners was observed by Cook’s
group using pyrrole-ol ligand stabilized by Hantzsch ester towards rapid degradation [72],
Scheme 11.

Usually, the inertness of aryl chlorides towards Cu-catalyzed N-arylations is the main
limitation in the application of cheap Ar-Cls. The important exception to the inertness of
Ar-Cls is a group of Ar-Cls activated by substitution with electron-withdrawing group(s)
(Ewg). Mentioned chloroaromatics substituted with Ewg, especially chloronitrobenzenes,
are activated for arylation of nucleophiles via SNAr2 reaction mechanism and react with
amines even under catalyst-free conditions, Scheme 12 [73].
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Cu/pyrolle-ol [72].
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Scheme 12. Arylation of nucleophile via SNAr2 mechanism (the non-aromatic intermediate is
stabilized by Ewg [73].

In addition, 2-Chlorobenzoic is another well-known and often applied Ar-Cl-based
arylating agent containing a carboxyl group in the role of Ewg. However, 2-chlorobenzoic
acid requires the application of a Cu-based catalyst for effective C-N cross-coupling [74–77].

Attempts were made to utilize effective bidentate ligands for arylation using non-
activated aryl chlorides (chlorobenzene, chlorotoluene, etc.) under vigorous conditions in
high-boiling polar aprotic solvents or in excess Ar-Cl used as both reagent and solvent.

Piperidine-2-carboxylic acid L-PIPA (Figure 5) was detected as a low-cost N,O-bidentate
ligand applicable for amination, respective amidation of aryl chlorides in co-action of CuI
in hot K2CO3/DMF mixture, although resulting in a low yield of corresponding anilides or
anilines [78] (Scheme 13). Aniline and nitroaniline regioisomers were tested for amination
of chlorobenzene. Surprisingly, diphenyl amine was obtained in the lowest yield (15%),
2-nitroaniline as the most reactive amine produces 31% of 2-nitrodiphenyl amine. Arylation
of indole was tested with a comparable yield of 36%. Using acetamide, acetophenone was
isolated in 24% yield. AO/RE mechanism was proposed for this reaction.

N,N′-Dimethylcyclohexane-1,2-diamine DMCHDA (Figure 2) was proved to be an
effective ligand for amidation of aryl chlorides used in excess as both arylation agents and
solvent with the addition of CuI and K3PO4 at 130◦C after tens of hours [79,80], Scheme 13.
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In addition to the above-mentioned, Ma ś research group searched for active ligands 

based on oxalamide derivatives for N-arylation, based on aryl chlorides application 

[8,47,83,84]). De et al. assumed that furane and thiofene ring moiety bound in oxalamide 

skeleton (BFMO and BTMPO ligands, Figure 6) are very effective ligands applicable for 

C-N couplings between aryl chlorides and different N-nucleophiles such as amides and 

secondary amines, including heterocyclic ones [47]. 

  

Figure 5. Structures of ligands capable together with Cu(I) to catalyze amination of Ar-Cls [78,81,82].

Furthermore, 8-Hydroxyquinoline-N-oxide (Oxine-N-oxide, Figure 5) was described
as a useful O,O-bidentate ligand for effective Cu-catalyzed amination of aryl chlorides
using different primary and secondary aliphatic amines and five-membered N-heterocycles
including pyrrole, imidazole, pyrazole, indole, 1,2,4-triazole [81], Scheme 13, Figure 5. The
AO/RE mechanism depicted in Scheme 4 was suggested for this reaction.
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Recently, a new complex produced in situ from 2-mesitylamino pyridine-1-oxide
(MEAPYO, Figure 5) and CuI was discovered as an available catalyst for efficient amination
of aliphatic primary and secondary amines [82]. Liu et al. described CuI/MEAPYO as
effective even for C-N coupling of nonactivated aryl chlorides [82]. Using primary amines
or less sterically hindered secondary amines, different aryl chlorides produce corresponding
arylated amines using 5–10 mol.% CuI and 5–10 mol.% of MEAPYO under heating at 130
◦C in DMF using Cs2CO3 as the base under argon [82]. However, when using more bulky
secondary amines (such as N-benzyl-N-methylamine or N-methylpiperazine), incomplete
conversion (and lower yield 53–59%) is observed [82], Scheme 13.

In addition to the above-mentioned, Ma´s research group searched for active ligands
based on oxalamide derivatives for N-arylation, based on aryl chlorides application [8,47,83,84]).
De et al. assumed that furane and thiofene ring moiety bound in oxalamide skeleton (BFMO
and BTMPO ligands, Figure 6) are very effective ligands applicable for C-N couplings
between aryl chlorides and different N-nucleophiles such as amides and secondary amines,
including heterocyclic ones [47].

Primary and secondary amines react smoothly with aryl bromides and iodides using even
highly catalytic (0.1 mol.% Cu2O and ligand, over 10,000 turnovers) conditions when apply-
ing a 1-naphtylamine-based oxalic diamide such as MNBO (N-(2-methylnaphtalen-1-yl)-N′-
benzyl oxalamide (Figure 6) in boiling KOH/EtOH mixture under inert after 12 h of action [44].

The weakly-activated polyaromatic chlorides such as 1-chloroanthraquinone react
smoothly with aromatic amines so long as a stochiometric quantity of powdered copper is
added. This reaction is broadly used in anthraquinone-based dye and pigment production.
Zhang et al. improved this methodology using only a catalytic amount of CuI (10 mol.%)
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in hot N,N-dimethylformamide using cheap K2CO3 as the base without the necessity of
adding another ligand [85], Scheme 14.
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2.3. Cu-Catalyzed Functionalization of Ar-Xs in Green Solvents

The replacement of organic solvents produced from fossil fuel sources with low toxic
bio-based (green or sustainable) solvents has become a prime concern due to environmen-
tal reasons.

Zhang et al. studied the role of amino acids in promoting CuI-based formation of
tertiary amines from Ar-Br or Ar-I and secondary amines, Scheme 15 [23]. The reported
synthetic protocol was based on the application of green and bio-based solvent dimethyl sul-
foxide (DMSO) applied as an excellent solvent for both inorganic and organic compounds
taking part in described aminations. Used amino acids are cheap and simply recycled by
washing the evaporated reaction mixture with water, according to the authors [23].
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Scheme 15. Arylation of amines using amino acid/CuI catalysts in dimethyl sulfoxide [23].

Yuan et al. discovered α-benzoin oxime (BO) as a useful ligand for arylation of a wide
of nucleophiles (e.g., azoles, piperidine, pyrrolidine and amino acids) using (hetero)aryl
halides in moderate to excellent yields [86], Schemes 16 and 17. The protocol based on the
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application of Cu(OAc)2/K3PO4/BO in DMSO allows rapid access to the most common
scaffolds found in FDA-approved pharmaceuticals.
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In order to develop a sustainable approach for the construction of C-N cross-coupling,
Yadav et al. devised a simple copper-mediated arylation of indoles with aryl halides in
glycerol solvent, Scheme 18 [87].
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The employment of glycerol solvent allowed the simple extraction of products into the
diethyl ether and the subsequent efficient recycling of the undissolved glycerol/catalyst
layer, after adding fresh DMSO for up to four runs without any loss in the catalytic activity.

Khatri and co-workers used glycerol as a green recyclable solvent to perform a
Cu(acac)2 mediated C-N cross-coupling reaction of Ar-I or Ar-Br with various amines,
Scheme 19 [88]. The application of KOH and Cu(acac)2 as the cheap, soluble reactants, and
the subsequent product isolation by ether extraction in addition to the catalyst recovery
becomes possible upon the use of glycerol as the polar protic solvent [88].
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Scheme 19. Amination of Ar-I or Ar-Br with primary amines or secondary cyclic amines using
recyclable Cu(acac)2/glycerol [88].

Bollenbach et al. discovered facile arylation of the primary aliphatic or aromatic
amines using Ar-Br affected by Cu(II)salt/glucose/1,3-diketone at 50 ◦C in nonionic surfac-
tant/water mixture with tBuONa as the base (Scheme 20) [89]. Glucose acts as a reductant
of Cu(II) ion, forming catalytically active complex LCu(I)X with 1,3-diketone (dipivaloyl-
methane) used as the ligand (L). The authors propose the common OA/RE mechanism for
this green arylation. The addition of 2 wt.% of nonionic surfactant overcomes the problem
with low solubility of Ar-Br in an aqueous solution. The authors did not mention the
recyclability of the used catalyst or the nonionic surfactant.
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Scheme 20. Amination of Ar-Br in aqueous solution using in situ produced LCu(I) catalyst [89].

Arylation of both the aliphatic primary and secondary amines using Ar-I and CuI/oxime
THQO (Figure 3) ligand in aqueous KOH solution at 25–65 ◦C was described by Wang et al.,
Scheme 21 [80].
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elevated temperature [90].

Ferlin et al. overcame the negligible solubility of Ar-Xs in neat water by using an
azeotropic mixture of biomass-derived furfuryl alcohol (FA) and water for effective cou-
pling of Ar-Is with heteroaromatic or aliphatic amines in the presence of CuI/K3PO4 at
150 oC under “ligand-free” conditions, Scheme 22 [91]. FA appears to work as both the
solvent and ligand in this case. The authors documented simple removal and recyclability
of used FA/water by azeotropic distillation under nitrogen and calculated E-factor 0.97 for
this synthetic protocol (E-factor = (kg of waste/kg of product) [92]).
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2.4. Microwave Assisted C-N Cross-Couplings

Generally, the Cu-catalyzed DH reactions were restricted by the harsh reaction condi-
tions and often required high temperatures (100–180 ◦C) for an extended reaction time. As a
result, enormous efforts have been paid to achieve more sustainable reaction conditions by
applying alternative energy supplies, such as microwave irradiation. The microwave-based
heating dramatically reduces the reaction time required and therefore results in an increase
in the DH efficiency [93].

Dihydrazones produced in situ from oxalyldihydrazide and cyclohexanone, acetone,
butanone and especially hexane-2,5-dione were published as promising ligands for C-N
coupling reactions using CuO in aqueous KOH solution containing phase-transfer catalyst
Bu4NBr under conventional or microwave heating [94] (Scheme 23).

This new three-component catalytic system comprising CuO/oxalyldihydrazide/
hexane-2,5-dione is suitable for the amine arylation using Ar-I or Ar-Br in an aqueous
medium, Scheme 23 [94]. The reaction worked well under microwave irradiation as
well as under conventional heating. Several primary and secondary amines, including
N-containing heterocycles, were effectively arylated (Scheme 23) [94].
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Scheme 23. Microwave-assisted C-N cross-coupling in aqueous KOH [94].

Another ligand-free microwave-assisted N-amidation of indoles and benzimidazoles
using Ar-I and a catalytic amount of Cu2O in polyethylene glycol PEG 3400 promoted by
Cu2O/Cs2CO3 was published by Colacino et al. [95], Scheme 24. The reaction products
are simply isolated without the need for column chromatography by diluting with diethyl
ether, aiding in the recovery of insoluble catalyst and the evaporation of ethereal extract.
This ligand-free C-N cross-coupling is catalyzed by Cu nanoparticles in situ prepared by
microwave heating the Cu2O/PEG 3400/Cs2CO3 mixture. In this case, contrary to the
above-mentioned C-N cross-couplings, the authors do not use inertization of the reaction
mixture, neither by nitrogen nor by argon.
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Scheme 24. Arylation of indole or benzimidazole in polyethylene glycol using microwave heating [95].

Using brominated anthraquinone derivatives such as bromamine acid, the amination
produces anthraquinone dye intermediates in an aqueous or alcoholic solution after the
addition of Cu powder or Cu(OAc)2 and inorganic bases such as KOAc or alkaline salts of
phosphoric acid, especially under microwave heating [96–98], Scheme 25.

Both ionic liquids and deep eutectic solvents were reported as sustainable nonvolatile
green solvents applicable for C-N cross-couplings [92,93].

Wu et al. have replaced the commonly used toxic solvents such as DMF and developed
a practical method for the CuI mediated arylation of aromatic amines with Ar-Br or Ar-I,
involving K2CO3 or t-BuOK as the base in a biodegradable low melting mixture choline
chloride/glycerol commonly called deep eutectic solvent (DES), Schemes 26 and 27 [99]. The
authors proposed a combined action of both components (choline chloride and glycerol) as
ligands in this described “ligand-free” method, comprising an oxidative addition/reductive
elimination mechanism. Interestingly, this reaction was performed without inertization in
the presence of air at 60–100 ◦C. In addition, the separation of the product from the reaction
mixture is based on a simple extraction using sustainable ether (cyclopentyl methyl ether)
and successful repeated recycling of both catalyst and DES has been proved.
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Some task-specific ionic liquids possess good thermal stability, sufficient solubiliza-
tion ability for both organic and inorganic compounds, and the ability to stabilize Cu2O
nanoparticles. Tetrabutylphosphonium acetate (n-Bu4POAc) was proved as a suitable sol-
vent for simple preparation of nanoscale Cu2O from CuCO3 and for subsequent arylation
of primary and secondary amines using Ar-I without the use of any base under ligand-free
conditions on air using nanoscale Cu2O [100], Scheme 27. The products were separated by
simple extraction using alkane. On the other hand, the authors did not choose recyclability
of the used ionic liquid/nano Cu2O mixture.

Lv et al. described IL-proline-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4)
as the recyclable solvent and CuI/L-proline complex as the catalyst for amination of bromi-
nated heterocycles and several bromoaromates [101]. Most of the cross-coupling reactions
mentioned in Sections 2.2–2.4 require the exclusion of air in most cases. This is not a
drawback for the scale-up of Cu-catalyzed dehalogenations, taking into consideration
the fact that most of the solvent-based processes in organic technology underwent using
inertization of the reaction mixtures for fire hazard minimization.

2.5. DH Catalyzed by Reusable Heterogeneous Copper Catalysts

As Cu-based arylation reactions need a high quantity of copper catalyst, its recy-
clability and reusability are desirable according to the sustainable chemistry principles
(minimization of waste production and energy consumption) [102].

The recyclability is achieved mostly using heterogeneous catalysts (nanoparticles (see
Scheme 27 [100]), immobilization of catalysts on organic polymeric or porous inorganic
supports [103]).

Formation of Cu-complex by reacting CuI with amino acid anions bound in hetero-
geneous, with imidazolium cations, modified polystyrene is one of the practically proved
strategies for enabling the repeated reusability of catalytic systems for the N-arylation of
heteroaromatics, Figure 7, Scheme 28 [104].

Chen et al. demonstrated that the recyclability of the supported ionic liquid catalyst
up to nine times makes the process green and efficient [104].

Rosa canina fruit extract (usually commercially used as a cosmetic ingredient with
CAS No. 84696-47-9, containing namely L-ascorbic acid and polyphenols) was used as a
stabilizing and reducing agent for CuO nanoparticles for arylation of N-heterocycles in hot
DMF under aerobic conditions [105], Scheme 29. The authors documented that the used
nano CuO is recyclable at least six times without loss of activity.
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Scheme 29. Arylation of primary and secondary amines using both Ar-Br and Ar-Cl catalyzed by
CuO nanoparticles [105].

Another air-stable reusable catalyst based on commercially available CuO nanoparticles
(particle size 33 nm and surface area 29 m2/g, Sigma-Aldrich Suppl.) described by Rout
et al. catalyzes iodobenzene-based arylation of anilines, benzylamine and other primary or
secondary amines in KOH/DMSO (Scheme 30) [106]. The arylation proceeds even using
bromo- or chlorobenzene and aniline-yielding diphenylamine in 60% or 80%, respectively.

Nanocrystalline CuO from another supplier, NanoScaleMaterials Inc, with a surface
area of 136 m2/g and crystallite size of 7–9 nm, catalyzes arylation of N-heterocycles with
activated aryl chlorides and aryl fluorides. Typically, chloro- or fluoro-nitrobenzenes were
applied for arylation of imidazole using K2CO3 as the base and mentioned nanocrystalline
CuO in hot DMF (Scheme 31) [107]. The used catalyst was separated by centrifugation and
recycled five times without significant loss of activity. However, chlorobenzene is quite
inert toward used reaction conditions.
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Scheme 31. Nano-CuO catalyzed arylation of imidazole using activated aryl chlorides or fluorides [107].

Magnetically simply separable silica supported Cu/Fe3O4 heterogeneous catalyst was
prepared by Nasir Baig and Varma [108]. Using this recyclable catalytical system, aryl
iodides and activated aryl bromides work as an arylating agent for primary and secondary
amines using microwave heating in an aqueous K2CO3 solution. Chlorobenzene does not
react with pyrrolidine under the described reaction conditions [108].

Kore and Pazdera described the preparation of the new stable Cu(I)-based cross-
coupling catalyst by ion exchange using polyacrylate katex resin [109]. This polymer
supported Cu(I) catalyst enables C-N cross-coupling between 4-chloropyridinium chloride
and different amines using K2CO3 in boiling isopropyl alcohol on air (Scheme 32).
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Scheme 32. Amination of 4-chloropyridine using Cu(I)-polyacrylate heterogeneous catalyst [109].

Reddy et al. supported in situ reduced copper on cellulose and tested the activity of
this heterogeneous catalyst for arylation of N-heterocycles using aryl halides, including aryl
chlorides mixture K2CO3/DMSO at 130 ◦C. The catalyst is simply recyclable by filtration
several times (Scheme 33) [110].



Catalysts 2022, 12, 911 22 of 30

Catalysts 2022, 12, x FOR PEER REVIEW 22 of 31 
 

 

Scheme 31. Nano-CuO catalyzed arylation of imidazole using activated aryl chlorides or fluorides 

[107]. 

Magnetically simply separable silica supported Cu/Fe3O4 heterogeneous catalyst was 

prepared by Nasir Baig and Varma [108]. Using this recyclable catalytical system, aryl 

iodides and activated aryl bromides work as an arylating agent for primary and secondary 

amines using microwave heating in an aqueous K2CO3 solution. Chlorobenzene does not 

react with pyrrolidine under the described reaction conditions [108].  

Kore and Pazdera described the preparation of the new stable Cu(I)-based cross-cou-

pling catalyst by ion exchange using polyacrylate katex resin [109]. This polymer sup-

ported Cu(I) catalyst enables C-N cross-coupling between 4-chloropyridinium chloride 

and different amines using K2CO3 in boiling isopropyl alcohol on air (Scheme 32). 

 

Scheme 32. Amination of 4-chloropyridine using Cu(I)-polyacrylate heterogeneous catalyst [109]. 

Reddy et al. supported in situ reduced copper on cellulose and tested the activity of 

this heterogeneous catalyst for arylation of N-heterocycles using aryl halides, including 

aryl chlorides mixture K2CO3/DMSO at 130 °C. The catalyst is simply recyclable by filtra-

tion several times (Scheme 33) [110].  

 

Scheme 33. Arylation of imidazole catalyzed by Cu(0) supported on celulose [110]. 

CuCl/Fe3O4/polyvinylalcohol-based simply recyclable magnetic nanocatalyst can cat-

alyze C-N cross-coupling even between chlorobenzene and nitrogen heterocycles in 

Et3N/DMF mixture at 100 °C [111]. 

1,2-Substituted 1,2-dihydroquinoxaline ligand bound in cross-linked polystyrene 

(Figure 8) was verified as a simply recyclable source of active C-N cross-coupling catalyst 

for arylation of aromatic amines with iodo-, bromo- and even chlorobenzene in DMSO, 

Figure 8 and Scheme 34 [112]. 

Scheme 33. Arylation of imidazole catalyzed by Cu(0) supported on celulose [110].

CuCl/Fe3O4/polyvinylalcohol-based simply recyclable magnetic nanocatalyst can
catalyze C-N cross-coupling even between chlorobenzene and nitrogen heterocycles in
Et3N/DMF mixture at 100 ◦C [111].

1,2-Substituted 1,2-dihydroquinoxaline ligand bound in cross-linked polystyrene
(Figure 8) was verified as a simply recyclable source of active C-N cross-coupling catalyst
for arylation of aromatic amines with iodo-, bromo- and even chlorobenzene in DMSO,
Figure 8 and Scheme 34 [112].
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Hydrothermally prepared nano-CuI was proved as an effective recyclable arylation
catalyst for C-N cross-coupling between aryl chlorides and primary or secondary amines,
including 5-membered N-heterocycles using K2CO3 as the base in hot DMF on air [113],
Scheme 35. The used catalyst was repeatedly separated by centrifugation and reused
without remarkable loss of activity.
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Cu-pyridine complex bound on a mesoporous silica SBA-15 surface through melamine
connection was proved as an effective and simply recyclable catalyst for arylation of
different primary and secondary amines using chlorobenzene in DMF/Et3N on air at 60 ◦C
(Scheme 36 and Figure 9) [114,115].
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A comprehensive review dealing with silica supported recyclable Cu-based catalysts
is provided by Veerakumar et al. [116].

Nitrogen-rich copolymeric microsheets with molar ratio C/N = 1/2 were prepared
through nucleophilic substitution of cyanuric chloride with melamine in pyridine/DMF
for supporting and stabilizing Cu0 nanoparticles. These were prepared by impregnation
of microsheets with copper acetate and subsequent reduction by hydrazine (Scheme 37).
Prepared monodispersed Cu0 nanoparticles were discovered as a superior catalyst for C-N
cross-coupling, even aryl chlorides with amines [117].
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microsheets [117].

Similarly prepared polymeric carbon nitride-supported Cu0 served as a worse C-N
cross-coupling catalyst and yielded only 30% arylation using chlorobenzene [118].

Summarizing the above-mentioned, it could be said that the most effective recyclable
heterogeneous Cu-based catalysts are applicable even in air, using Ar-Cl as an arylating
agent. This opens up possibilities for the use of C-N cross-couplings for the dehalogenation
of recalcitrant Ar-X-based waste.

3. Conclusions

Utilization of aryl halides for arylation of amines using catalysts based on copper as a
cheap and biogenic element potentially enables simple and safe destruction (dehalogena-
tion) of waste non-biodegradable aryl halides to the corresponding aryl amines. Produced
aromatic amines could be suitable for subsequent utilization as synthetic intermediates
or for energy utilization as the refuse-derived fuel (RDF) [119]. The main advantage of
the possible utilization of mentioned C-N cross-coupling reactions compared to C-C or
C-O couplings is the minimization of the risk of the potential undesirable formation of
highly toxic and thermodynamically stable polyhalogenated biphenyls, dibenzo-p-dioxins,
or dibenzofurans as the by-products of arylation reactions [120].

For this purpose, a broad range of bio-based amines such as ammonia from anaerobic
digestion of waste biomass or amino acid mixtures (alanine, cysteine, glycine, proline,
valine [41], etc.) produced by waste protein hydrolysis are available as a potential source of
N- or S-nucleophiles and/or auxiliary ligand(s) [121–123].

Considering that both S- or C-acid-based nucleophiles could be part of waste contain-
ing Ar-Xs or should be used as ligands for DH (1,3-diketones); however, their participation
in arylation reactions is possible. On the other hand, almost entirely aryl iodides or aryl
bromides are necessary for the arylation of sulphides or C-acids [46,124–127].
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However, the possibilities of C-N -based multiple cross-couplings of polychlorinated
benzenes were never studied in detail according to our best knowledge. Merely differ-
ences in cross-couplings of aromates substituted with different halides (typically bromo-
iodobenzenes, bromo-chlorobenzenes and halogeno-fluorobenzenes) were mentioned in
published articles [59,60,70,128–135].

The broader application of cross-coupling reactions for effective dehalogenation of
waste aryl halides should be joined with possible efficient recycling of used catalysts. Cu-
based nanoparticles were recognized as reactive enough even for C-N cross coupling on air,
in addition. As a result, heterogeneous Cu catalysts, especially Cu-based nanocatalysts,
seem to be essential for Cu-catalyzed methods of C-N cross coupling-based dehalogena-
tion [136,137]. Although Cu-based C-N cross-coupling does not achieve sufficient dehalo-
genation efficiency [3], the produced partially halogenated aromatic amines are suitable for
subsequent complete dehalogenation in aqueous solution using proved hydrodehalogena-
tion methods accompanied by subsequent biodegradation [138–141].
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