Univerzita Pardubice

Fakulta chemicko-technologická

Nové katalytické systémy pro asymetrickou adici arylboronových kyselin na cyklické ketiminy

BAKALÁŘSKÁ PRÁCE

AUTOR PRÁCE: Eliška Paulusová

VEDOUCÍ PRÁCE: Ing. Jan Bartáček, Ph.D.

2022

University of Pardubice

Faculty of Chemical Technology

Novel catalytic systems for an asymmetric addition of arylboronic acids to cyclic ketimines

BACHELOR THESIS

AUTHOR: Eliška Paulusová

SUPERVISOR: Ing. Jan Bartáček, Ph.D.

2022

Univerzita Pardubice Fakulta chemicko-technologická Akademický rok: 2021/2022

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

(projektu, uměleckého díla, uměleckého výkonu)

Jméno a příjmení:	Eliška Paulusová
Osobní číslo:	C19190
Studijní program:	B0512A130006 Analýza biologických materiálů
Téma práce:	Nové katalytické systémy pro asymetrickou adici arylboronových ky-
	selin na cyklické ketiminy
Téma práce anglicky:	Novel Catalytic Systems For An Asymmetric Addition Of Arylboronic
	Acids To Cyclic Ketimines
Zadávající katedra:	Katedra biologických a biochemických věd

Zásady pro vypracování

1. Proveďte literární rešerši týkající využití palladnatých komplexů (S)-4-(*terc*-butyl)-2-(5-(trifluormethyl)pyridin-2-yl)-4,5-dihydrooxazolu v organické syntéze z nedávné literatury.

Připravte 3 vybrané deriváty (S)-4-(*terc*-butyl)-2-(5-(trifluormethyl)pyridin-2-yl)-4,5-dihydrooxazolu
a otestujte jejich katalytickou aktivitu v kombinaci s trifluoroctanem palladnatým na modelové adici
vybrané boronové kyseliny na cyklický ketimin.

3. Všechny látky charakterizujte.

4. Výsledky vyhodnoťte a zpracujte formou závěrečné zprávy.

Rozsah pracovní zprávy:25 s.Rozsah grafických prací:dle potřebyForma zpracování bakalářské práce:tištěná

Seznam doporučené literatury: Podle pokynů vedoucího bakalářské práce.

Vedoucí bakalářské práce: Ing. Jan Bartáček, Ph.D. Ústav organické chemie a technologie Datum zadání bakalářské práce: 18. prosince 2021 Termín odevzdání bakalářské práce: 1. července 2022

L.S.

prof. Ing. Petr Kalenda, CSc. v.r. děkan prof. Mgr. Roman Kandár, Ph.D. v.r. vedoucí katedry

V Pardubicích dne 28. února 2022

Prohlašuji:

Tuto práci jsem vypracovala samostatně. Veškeré literární prameny a informace, které jsem v práci využila, jsou uvedeny v seznamu použité literatury. Byla jsem seznámena s tím, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů, zejména se skutečností, že Univerzita Pardubice má právo na uzavření licenční smlouvy o užití této práce jako školního díla podle § 60 odst. 1 autorského zákona, a s tím, že pokud dojde k užití této práce mnou nebo bude poskytnuta licence o užití jinému subjektu, je Univerzita Pardubice oprávněna ode mne požadovat přiměřený příspěvek na úhradu nákladů, které na vytvoření díla vynaložila, a to podle okolností až do jejich skutečné výše.

Beru na vědomí, že v souladu s § 47b zákona č. 111/1998 Sb., o vysokých školách a o změně a doplnění dalších zákonů (zákon o vysokých školách), ve znění pozdějších předpisů, a směrnicí Univerzity Pardubice č. 7/2019 Pravidla pro odevzdávání, zveřejňování a formální úpravu závěrečných prací, ve znění pozdějších dodatků, bude práce zveřejněna prostřednictvím Digitální knihovny Univerzity Pardubice.

V Pardubicích dne 30.6.2022

Eliška Paulusová v.r.

Poděkování

Ráda bych poděkovala Ing. Janu Bartáčkovi, Ph.D. za odborné vedení, užitečné rady, ochotu a vstřícnost a také za měření NMR. Ing. Martinu Kocúrikovi za pomoc s experimentální částí a vytvoření příjemného pracovního prostředí. Ing. Jaroslavu Pochobradskému za rady a pomoc v laboratoři. Doc. Ing. Pavlu Drabinovi, Ph.D. za ochotné měření HPLC.

V neposlední řadě bych ráda vyjádřila obrovské díky mé milované rodině a přátelům, kteří mne po celou dobu studia podporovali.

ANOTACE

Byla provedena literární rešerše shrnující nejnovější poznatky týkající se aplikace palladnatých komplexů (S)-4-(terc-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5dihydrooxazolu. Experimentální část byla zaměřena na přípravu tří derivátů (S)-4-(terc-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazol, kde byly v poloze 3- připojeny benzyloxy, fenyl a 4-methoxykarbonylfenyl skupiny. Připravené ligandy byly testovány v kombinaci s trifluoroctanem palladnatým jako katalyzátory pro asymetrickou adici arylboronových kyselin na cyklické N-sulfonyl ketiminy. Byl diskutován minimální vliv substituce v poloze 3- na katalytické vlastnosti a poloha 3- tak byla označena jako možné místo pro zakotvení (S)-4-(terc-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazolu.

KLÍČOVÁ SLOVA

Palladium, arylboronová kyselina, asymetrická katalýza, cyklický ketimin, Heckova reakce.

ANOTTATION

A literature review summarizing the latest findings on the use of (S)-4-(*tert*-butyl)-2-(5-(trifluoromethyl)pyridine-2-yl)-4,5-dihydrooxazole palladium complexes was performed. The experimental part was focused on the preparation of 3 derivatives of (S)-4-(*tert*-butyl)-2-(5-(trifluoromethyl)pyridine-2-yl)-4,5-dihydrooxazole by attachment benzyloxy, phenyl and 4-methoxycarbonylphenyl groups in the 3-position. Prepared ligands were tested in combination with palladium trifluorooctane as catalysts for the asymmetric addition of arylboronic acids to cyclic *N*-sulfonyl ketimines. The impact of substitution at the 3-position on the catalytic properties was investigated and the 3-position was identified as a possible site for immobilization of (S)-4-(*tert*-butyl)-2-(5-(trifluoromethyl)pyridine-2-yl)-4,5-dihydrooxazole.

KEYWORDS

Palladium, arylboronic acid, asymmetric catalysis, cyclic ketimine, Heck reaction.

ZKRATKY

2,6-DMBQ – 2,6-dimethoxy-1,4-benzochinon

4 Å MS – 4 Å molekulová síta

 ${}^{5}CF_{3}$ -*t*Bu-PyOx – (S)-4-(*terc*-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazol

Boc – *terc*-butyloxykarbonyl

dba – dibenzylidenaceton

DCE – dichlorethan

DCM – dichlormethan

 ${\bf DIPEA-N, N-diiso propyle thy lamin}$

DMAc - N, N-dimethylacetamid

DMF – N, N-dimethylformamid

EA-ethyl-acetát

HPLC – vysokoúčinná kapalinová chromatografie (z angl. high-performance liquid chromatography)

iPr-Pyox - (S)-4-isopropyl-2-(pyridin-2-yl)-4,5-dihydrooxazol

Ms – mesyl (methansulfonyl)

Ns-nosyl (4-nitrobenzensulfonyl)

PMB-4-methoxybenzyl

sBu-Pyox – (S)-4-((R)-sec-butyl)-2-(pyridin-2-yl)-4,5-dihydrooxazol

tBu-Nicox – (S)-4-(terc-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazol

TEA – triethylamin

TFA – trifluoracetát

TFE – 2,2,2-trifluorethanol

Ts – tosyl (toluen-4-sulfonyl)

OBSAH

1	ÚVOD11
2	TEORETICKÁ ČÁST13
2.1	Reakce katalyzované palladnatými komplexy ⁵ CF ₃ - <i>t</i> Bu-PyOx13
3	CÍL BAKALÁŘSKÉ PRÁCE25
4	EXPERIMENTÁLNÍ ČÁST26
4.1	Hmotnostní spektrometrie ve vysokém rozlišení (HRMS)26
4.2	Nukleární magnetická rezonance (NMR)26
4.3	Infračervená spektroskopie (FT-IR)26
4.4	Chirální HPLC
4.5	Příprava sloučenin
4	.5.1 Příprava (S)-4-(terc-butyl)-2-(3-chlor-5-(trifluormethyl)pyridin-2-yl)-4,5-
d	ihydrooxazolu (L ¹)27
4 d	.5.2 Příprava (S)-2-(3-(benzyloxy)-5-(trifluormethyl)pyridin-2-yl)-4-(<i>terc</i> -butyl)-4,5- ihydrooxazolu (I_{2}^{2})
4	.5.3 Příprava 4-(<i>terc</i> -butyl)-2-(3-fenyl-5-(trifluormethyl)pyridin-2-yl)-4.5-
d	ihvdrooxazolu (L ³)
4	.5.4 Příprava methyl-(S)-4-(2-(4-(<i>terc</i> -butyl)-4,5-dihydrooxazol-2-yl)-5-
(1	rifluormethyl)pyridin-3-yl)benzoátu (L ⁴)
4	.5.5 Příprava 3-butyl-3-(<i>m</i> -tolyl)-2,3-dihydrobenzo[<i>d</i>]isothiazol-1,1-dioxidu31
5	VÝSLEDKY A DISKUSE
5.1	Návrh a syntéza ligandů
5.2	Testování katalytické aktivity34

6	ZÁVĚR	35
7	PŘEHLED POUŽITÉ LITERATURY	36
8	PŘÍLOHY	39
0		

1 ÚVOD

Asymetrická katalýza využívající komplexy kovů je vhodnou metodou pro přípravu opticky čistých látek. Její výhodou je vysoká účinnost a dobrá atomová ekonomika [1]. Organické ligandy mohou ovlivnit sterické a elektronické vlastnosti kovových katalyzátorů, a proto je důležitý jejich vývoj. Nové účinné chirální ligandy umožňují nižší reakční teploty a snižují množství vedlejších produktů, čímž mohou zlepšit reaktivitu, regioselektivitu a enantioselektivitu reakcí katalyzovaných kovem [1].

V asymetrické katalýze se hojně využívají chirální ligandy pyridin-oxazolinového typu. Poprvé byl využit při asymetrické monofenylaci 1,2-diolů katalyzované mědí v roce 1986 Brunnerovou skupinou (Schéma 1) [1,2].

Schéma 1: První aplikace chirálního pyridin-oxazolinového ligandu [2].

Ligandy pyridin-oxazolinového typu jsou v současné době předmětem intenzivního výzkumu [5–10]. Tato práce se zabývá využitím ligandů vycházejících z (*S*)-4-(*terc*-butyl)-2-(3-chlor-5-(trifluormethyl)pyridin-2-yl)-4,5-dihydrooxazolu (⁵**CF**₃-*t***Bu-PyOx**), který byl vyvinut a poprvé použit Sigmanem v roce 2012. Jednalo se o asymetrickou intermolekulární arylační reakci acyklických alkenylalkoholů spojenou s reakcí Heckova typu katalyzovanou palladiem (Schéma 2) [1,3].

Schéma 2: První aplikace ⁵CF₃-*t*Bu-PyOx [3].

Substituce pyridinového kruhu v poloze 3- umožňuje interakci mezi pyridinovým a oxazolinovým kruhem, což může významně ovlivňovat katalytickou aktivitu a enantioselektivitu reakce [1].

Na elektrony chudá skupina CF₃ podporuje elektrofilní povahu palladnatého kationtu, což vede k tvorbě karbonylového produktu místo produktu Heckovy reakce [1].

Tento ligand může být snadno připraven kondenzační reakcí 5-trifluormethylpyridin-2-karbonitrilu s příslušným opticky čistým aminoalkoholem (*terc*-leucinol) za katalýzy Lewisovými kyselinami (např. triflát zinečnatý) (Schéma 3) [4].

Schéma 3: Syntéza (S)-4-(terc-butyl)-2-(3-chlor-5-(trifluormethyl)pyridin-2-yl)-4,5-dihydrooxazolu [4].

2 TEORETICKÁ ČÁST

(*S*)-4-(*terc*-butyl)-2-(-5-(trifluormethyl)pyridin-2-yl)-4,5-dihydrooxazol (⁵**CF**₃-*t***Bu-PyOx**) je jako ligand využíván pro asymetrickou katalýzu s různými přechodnými kovy, např. Ni [4,11,12], Co [13] nebo Cu [14]. Nejčastěji je pak využíván v kombinaci s Pd, čemuž bude dále věnována pozornost.

2.1 Reakce katalyzované palladnatými komplexy 5CF3-tBu-PyOx

Tým Zhua a kol. v roce 2021 popsal palladiem katalyzovanou asymetrickou cyklizaci spojenou s reakcí Heckova typu [15]. Reakce byla katalyzována komplexem octanu palladnatého s ⁵**CF**₃*-t***Bu-PyOx**. Jako terminální oxidovadlo byl využit kyslík. Reakce dosahuje průměrných výtěžků s minimálním vlivem substituce. Celkově je však dosahováno vysokých enantioselektivit bez zjevného trendu (Tabulka 1) [15].

Tabulka 1: Asymetrická cyklizace spojena s reakcí Heckova typu katalyzovaná palladnatým komplexem [15].

$Ph + CONHR^{2} + R^{3} CONHR^{2} + CONHR^{2} R^{3} CONHR^{2} R^{3} CONHR^{2} R^{3} R^{3}$					
#	R ¹	R ²	R ³	Výtěžek (%)	ee (%)
1			Ph	75	93
2			4-OMe-C ₆ H ₄	67	90
3			4-F-C ₆ H ₄	71	92
4			$4-Cl-C_6H_4$	59	89
5	Ms		$4-Br-C_6H_4$	52	90
6	1015	Bn	Bn $\frac{3-\text{Me-C}_6\text{H}_4}{2-\text{NO}_2-\text{C}_6\text{H}_4}$ $\frac{63}{52}$	63	91
7		2		52	90
8			naftalen-1-yl	67	88
9	1		Me	73	87
10			Bn	53	82
11	Ts]	CH ₂ COO <i>t</i> Bu	51	93
12	Ms		Н	44	84
13	1.12	<i>i</i> Bu	Ph	54	88

#	R ¹	R ²	R ³	Výtěžek (%)	ee (%)
14				57	91
			Ph		
	produ	kt:	∽ i∖ Ms		

V rámci rozšíření škály použitelných substrátů byla studována série, kde se lišila substituce výchozího ynaminu (Tabulka 2) [15]. Z dosažených výsledků vyplývá, že výtěžek reakce je pouze minimálně závislý na substituci výchozích látek. Pro vysokou enantioselektivitu se však zdá být výhodné, když v poloze 2- vznikajícího indolového skeletu je aromatický substituent [15].

R ²	NH R ¹	+ CON	⁵ CF ₃ - <i>t</i> Bu-PyOx (5 mo HBnPd(OAc) ₂ (10 mol % DCE, 60 °C, O ₂	$R^2 $	CONHBn IIIPh R ³		
#	R ¹	R ² *	R ³	Výtěžek (%)	ee (%)		
1	Ms		4-OMe-C ₆ H ₄	71	91		
2			4-COOMe-C ₆ H ₄	50	94		
3	-	Н	thiofen-3-yl	59	92		
4			nC ₄ H ₉	49	86		
5			(CH ₂) ₃ Cl	55	86		
6			(CH ₂) ₂ OBn	57	85		
7	Ts		(CH ₂) ₃ COOMe	41	81		
8		4-CF ₃		60	90		
9		4-COOMe		51	92		
10		4-Me	Ph	63	94		
11		Н		55	94		
12		5-F		65	93		
13	Ns	4-C1		51	91		
*Polc	*Poloha vzhledem k výchozímu ynaminu						

Tabulka 2: Vliv substituce výchozího ynaminu na výtěžek a enantioselektivitu reakce [15].

V roce 2020 tým Zhua a kol. zkoumal enantioselektivní palladiem katalyzovanou oxidativní Heckovu reakci [16]. Reakce se účastnily prochirální 4,4-disubstituované

cyklopenteny, na které byla adována řada arylboronových kyselin nesoucích elektrondonorové a elektronakceptorní skupiny. Reakce dosahovala poměrně vysokých výtěžků s vysokou enantioselektivitou (Tabulka 3) [16].

$\mathbb{CONHR}^{1} + \text{ArB(OH)}_{2}$			$\begin{array}{c} {}^{5}\text{CF}_{3}\text{-}\textit{t}\text{Bu-PyOx} (9 \text{ mol } \%) \\ \hline Pd(TFA)_{2} (7,5 \text{ mol } \%) \\ \hline DCE, \text{Na}_{2}\text{CO}_{3}, 50 \ ^{\circ}\text{C}, \text{O}_{2} \\ 24 \text{ h} \end{array} \begin{array}{c} CONHR^{1} \\ R^{2} \\ \hline \end{array}$			
#	R ¹	R ²	Ar	Výtěžek (%)	ee (%)	
1			$4-OAc-C_6H_4$	89	93	
2			4-OMe-C ₆ H ₄	89	91	
3			4-OBn-C ₆ H ₄	76	89	
4			4-NHBoc-C ₆ H ₄	79	88	
5		Ph	4-COOMe-C ₆ H ₄	75	96	
6			3-OMe-C ₆ H ₄	61	95	
7			3,5-(OMe) ₂ -C ₆ H ₃	71	97	
8			3-F-5-OMe-C ₆ H ₃	78	95	
9			2-Me-4-OMe-C ₆ H ₃	92	89	
10		4-OMe-C ₆ H ₄		66	97	
11	Bn	4-F-C ₆ H ₄		67	91	
12		$4-C1-C_6H_4$	$3,5-(OMe)_2-C_6H_3$	63	84	
13		3-Me-C ₆ H ₄		63	89	
14		naftalen-1-yl		65	92	
15		$2-NO_2-C_6H_4$	4-OMe-C ₆ H ₄	55	68	
16		Bn		50	95	
17		Me	$3.5-(OMe)_2-C_6H_3$	61	95	
18		Н		63	96	
19		CH ₂ COO <i>t</i> Bu		65	92	
20			6-OMe-naftalen-2-yl	86	88	
21		Ph	3,4-(CH ₂ O ₂)-C ₆ H ₃	75	88	
22	<i>i</i> Bu		4-OAc-C ₆ H ₄	66	82	

Tabulka 3: Oxidativní desymetrizace prochirálních cyklopentenů [16].

Jako substráty je možné využít též substituované spirocyklopenteny (Tabulka 4) [16]. Reakce dosahovala poměrně vysokých výtěžků s mírně sníženou enantioselektivitou v porovnání s monocyklickými substráty.

		$\stackrel{R}{}_{n} + \operatorname{ArB}(OH)_2 \stackrel{5CF_3-tBu-PyOx}{\operatorname{Pd}(TFA)_2 (7,5)}$ $\stackrel{Pd(TFA)_2 (7,5)}{\operatorname{DCE}, \operatorname{Na}_2\operatorname{CO}_3, 5}$ $\stackrel{24}{\operatorname{h}}$		⁄Ox (9 mol %) (7,5 mol %) O ₃ , 50 °C, O ₂ → Ar	
#	R	n	Ar	Výtěžek (%)	ee (%)
1	Н	0		88	79
2	Me	0	$4-OMe-C_6H_4$	85	79
3	3 Boc 0			77	75
4	200	1	$3,5-(OMe)_2-C_6H_3$	61	92

Tabulka 4: Adice arylboronových kyselin na spirocyklopenteny [16].

V roce 2019 tým Yanga a kol. studoval palladiem katalyzovanou tandemovou C–H funkcionalizaci / asymetrickou allylaci. Modelovou reakcí je reakce *N*-sulfonylbenzamidů s 1,3-dieny [17]. V přítomnosti chirálního ⁵CF₃-*t*Bu-PyOx probíhá reakce vedoucí ke vzniku 3,4-dihydroisochinolonů. Jako oxidovadlo byl využit vzduch. Z pohledu enantioselektivity je výhodnější mít výchozí *N*-sulfonylbenzamid substituovaný elektrondonory. V případě substituce sulfonyl skupiny není patrné významné ovlivnění enantioselektivity reakce. Využívané 3-substituované 1,3-dieny dosahovaly stabilně vysokých enantioselektivit bez zjevného trendu, s výjimkou využití buta-1,3-dienu kde byla enantioselektivita výrazně snížena (21 %) (Tabulka 5) [17].

	o ↓ so₂R	5 ²	CF ₃ - <i>t</i> Bu-PyOx (12 mol Pd(TFA) ₂ (10 mol %) DIPEA (20 mol %)	%)	SO₂R ²
R1 <u>(</u>	H H	+ // V ^{R3} -	2,6-DMBQ (30 mol %) PhCF ₃ , vzduch 80 °C, 48 h		NR ³
#	R ¹	R ²	R ³	Výtěžek (%)	ee (%)
1	4-Me			80	84
2	4-Et			76	86
3	4- <i>t</i> Bu			81	87
4	4-OMe	$4-NO_2-C_6H_4$	Ph	62	86
5	3-Me	4 1002 00114	1 11	80	82
6	2-Me			72	80
7	2,4-(Me) ₂			74	82
8	4-F		Ī	43	62

Tabulka 5: Palladiem katalyzovaná tandemová C-H fukcionalizace / asymetrická allylace [17].

#	R ¹	R ²	R ³	Výtěžek (%)	ee (%)
9	4-C1			46	73
10	4-Br			33	78
11	4-NO ₂		Ph	52	67
12	4-COOMe			46	46
13	4-CF ₃			85	85
14	3-F-4-OMe			54	54
15			$4-Me-C_6H_4$	82	85
16			4-OMe-C ₆ H ₄	69	84
17			4-F-C ₆ H ₄	79	76
18			4-Cl-C ₆ H ₄	73	85
19		$4-NO_2-C_6H_4$	$4-Br-C_6H_4$	59	83
20			3-Br-C ₆ H ₄	66	83
21			2-Me-C ₆ H ₄	80	92
22			2-OMe-C ₆ H ₄	64	90
23			2-OCF ₃ -C ₆ H ₄	78	90
24			2-F-C ₆ H ₄	77	92
25	Н		2-Cl-C ₆ H ₄	78	89
26			2-Br-C ₆ H ₄	68	96
27			2-Br-5-OMe-C ₆ H ₃	62	96
28			COOEt	56	75
29			Н	63	21
30			Bn	64	90
31		4-CH ₃ -C ₆ H ₄		32	80
32		naftalen-2-yl		55	83
33		$2-NO_2-C_6H_4$	Ph	70	81
34		CF ₃		45	77
35		4-CF ₃ - C ₆ H ₄		77	86
36		o Ns		78	65
	Produkt:		-Ph		

V roce 2019 tým Sigmana a kol. studoval palladiem katalyzovanou enantioselektivní alkenylaci [18]. Modelovou reakcí je reakce alkenylbenzenů s trifláty. Reakce dosahovala průměrných výtěžků s vysokou enantioselektivitou (Tabulka 6) [18].

	$\frac{{}^{5}\text{CF}_{3}\text{-}t\text{Bu-PyOx} (12 \text{ mol }\%)}{\text{Pd}(\text{dba})_{2} (10 \text{ mol }\%)} \xrightarrow{\text{R}}_{=}$						
	Et 🗸 🗸 🖓	Et	⊶ ^{Ar}				
#	R	Ar	Produkt	Výtěžek (%)	ee (%)		
1				41	90		
2	O Br		Et Ar	30	96		
3	°,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4-OMe-C ₆ H ₄		45	95		
4	MeOOC			52	96		
5	EtOOC 7		R Et Ar	60	93		
6	MeOOC			61	96		
7	PhthN EtOOC	2-F-pyridin-4-yl	Et Ar	51	98		

Tabulka 6: Palladiem katalyzovaná enantioselektivní alkenylace [18].

V této práci se Sigman a kol. dále zabývali vlivem substituce alkenylbenzenu [18]. Bylo dosahováno průměrných výtěžků a vysokých enantioselektivit bez výrazného vlivu substituce (Tabulka 7) [18].

Et	R + Me OTf	CF ₃ - Po dba	<i>t</i> Bu-PyOx (12 mol %) d(dba) ₂ (10 mol %) (7,5 mol %), 4 Å MS p-OMe-PhB(OH) ₂ DMF, rt, 48-72 h	
#	R		Výtěžek (%)	ee (%)
1	Ph		64	93
2	$4-Me-C_6H_4$		56	92
3	4-OMe-C ₆ H ₄		62	92
4	2-OMe-C ₆ H ₄		47	92
5	4-OH-C ₆ H ₄		42	89
6	$4-NMe_2-C_6H_4$		44	86
7	4-COOEt-C ₆ H ₄		53	92
8	$3,5-(OMe)_2-C_6H_3$		57	92
9	4-CF3-C6H4		47	90
10	4-F-C ₆ H ₄		40	92
11	3-F-C ₆ H ₄		61	92
12	3-F-4-OMe-C ₆ H ₃		51	93
13	naftalen-1-yl		57	90
14	naftalen-2-yl		44	92
15	4-COOMe-C ₆ H ₄		42	90
16	2-F-pyridin-4-yl		66	91

Tabulka 7: Vliv substituce alkenylbenzenu [18].

Byl studován také vliv délky alifatického řetězce mezi dvojnou vazbou a arylem, přičemž ve všech případech bylo dosaženo průměrných výtěžků a vysoké enantioselektivity, která se však mírně snižovala s prodlužujícím se řetězcem (Tabulka 8) [18].

Tabulka 8: Vliv délky alifatického řetězce mezi dvojnou vazbou a arylem [18].

	$\overset{5}{\sim} CF_{3}-tBu-PyOx (12 \text{ mol }\%)$ $\overset{\text{Pd}(dba)_{2} (10 \text{ mol }\%)}{\overset{\text{Pd}(dba)_{2} (10 \text{ mol }\%)} \overset{\text{R}}{\overset{\text{Pd}}{\overset{Pd}}}{\overset{Pd}}}{\overset{Pd}}{\overset{Pd}}{\overset{Pd}}{\overset{Pd}}}{\overset{Pd}}{\overset{Pd}}{\overset{Pd}}{\overset{Pd}}{\overset{Pd}}}{\overset{Pd}}{\overset{Pd}}{\overset{Pd}}}{\overset{Pd}}{\overset{Pd}}{\overset{Pd}}}{\overset{Pd}}{\overset{Pd}}}{\overset{Pd}}}{\overset{Pd}}{\overset{Pd}}}{\overset{Pd}}}{\overset{Pd}}}{\overset{Pd}}{\overset{Pd}}}{\overset{Pd}}}{\overset{Pd}}{\overset{Pd}}}{\overset$								
$\begin{bmatrix} Et & & & \\ n & & & \\ n & & & \\ p-OMe-PhB(OH)_2 \\ DMF, rt, 48-72 h \end{bmatrix} Et & Ar$						Ar n			
#	R	n	Ar	Produkt	Výtěžek (%)	ee (%)			
1		2	4 OMe C.H.	$Et \xrightarrow{R} (Ar) (Ar)$	63	89			
2		3	4-01010-06114	R	59	80			
3		4		Et Ar	57	78			
19									

V roce 2018 tým Sigmana a kol. studoval palladiem katalyzovanou enantioselektivní arylaci enlaktamů spojenou s reakcí Heckova typu [19]. Arylem substituované arylboronové kyseliny poskytovaly produkty ve vysokých výtěžcích i enantioselektivitě. Zajímavostí je substituce methylem v poloze 2-, kdy byl sice získán produkt s vysokých výtěžkem (88 %), ale se sníženou enantioselektivitou (74 %). Enantioselektivita je obecně vysoká, vyšších hodnot je dosahováno zejména při použití elektronově chudých arylboronových kyselin (Tabulka 9) [19].

]	⁵ CF ₃ - <i>t</i> Bu-PyOx(Pd(CH ₃ CN)₂(OTs)	10 mol %) ₂ (6 mol %)	\bigcirc
R R	→ Ar 91 %), O ₂ Ar	N KO		
#	R	Ar	Výtěžek (%)	ee (%)
1		4-Me-C ₆ H ₄	86	96
2		4-iPr-C ₆ H ₄	82	93
3		$3-i\Pr-C_6H_4$	76	97
4		3,5-(Me) ₂ -C ₆ H ₃	86	96
5		2-Me-C ₆ H ₄	88	74
6		4-OMe-C ₆ H ₄	84	87
7		4-F-C ₆ H ₄	73	98
8		4-Cl-C ₆ H ₄	75	98
9	Boc	4-Br-C ₆ H ₄	89	99
10	Doe	$3-Br-C_6H_4$	88	96
11		3,4-Br ₂ -C ₆ H ₃	87	96
12		3,4,5-F ₃ -C ₆ H ₂	49	92
13		3-Me-4-F-C ₆ H ₃	81	95
14		4-CF ₃ -C ₆ H ₄	85	99
15		4-COOMe-C ₆ H ₄	74	97
16		3,4-(CH ₂ O ₂) ₂ -C ₆ H ₃	94	90
17		naftalen-2-yl	93	95
18		furan-2-yl	60	60
19	Bn	6-F-pyridin-3-yl	41	86
20		1-Boc-1 <i>H</i> -pyrrol-2-yl	69	47
21	PMB	1-methyl-1 <i>H</i> -indol-5-yl	73	14

Tabulka 9: Palladiem katalyzovaná enantioselektivní arylace enelaktamů spojená s reakcí Heckova typu [19].

V roce 2017 tým Dinga, Houa, Xua a kol. studoval palladiem katalyzovanou asymetrickou oxidativní Heckovu reakci [20]. Rozmezí výtěžků je poměrně široké (21–88%), na rozdíl od enantioselektivity, která byla téměř vždy vysoká. Výhodněji se však jeví využití elektronově chudých arylboronových kyselin (Tabulka 10) [20].

$5CF_3-tBu-PyOx (13 mol \%)$ $Pd(CH_3CN)_2Cl_2 (6 mol \%)$						
R		Cu	Cu(OTf) ₂ (12 mol %), 3 Å MS O ₂ , DMAc, 40 °C, 24 h R			
#	R	Ar		Výtěžek (%)	ee (%)	
1		Ph		81	93	
2		4-Me-C	₆ H ₄	76	91	
3		3-Me-C	₆ H ₄	84	94	
4		2-Me-C	₆ H ₄	51	83	
5	н	4-F-C ₆	H ₄	80	92	
6	11	4-Br-C	5H4	53	93	
7		4-COOMe	e-C ₆ H ₄	49	95	
8		4-OMe-0	C6H4	88	82	
9		naftalen	·1-yl	63	91	
10		naftalen	-2-yl	70	92	
11	6-F	4-OMe-(°∠H₄	84	85	
12	6-Br			71	85	
13	6-C1	4-Cl-C	5H4	62	92	
14	6-Me	4-OMe-0	°∠H₄	71	83	
15	7-Me		-0114	62	66	
16		4-CF ₃ -C	C ₆ H ₄	21	93	
17	Н	4-CN-C	6H4	37	91	
18		4-Ac-C	6H4	45	92	

Tabulka 10: Palladiem katalyzovaná asymetrická redoxní Heckova reakce [20].

V roce 2017 tým Sigmana a kol. studoval palladiem katalyzovanou enantioselektivní alkenylaci trisubstituovaných allylových alkoholů spojenou s reakcí Heckova typu [21]. Jako rozpouštědlo byl použit ethyl-pivalát. Reakce dosahovala průměrných výtěžků. Celkově bylo dosahováno vysokých enantioselektivit téměř nezávisle na substituci (Tabulka 11) [21].

O _∖ Me	+ R ¹	R^{3}	⁵ CF ₃ -tBu-PyOx Pd ₂ (dba) ₃ (H Li ₂ CO ₃ , eth 3 Å MS, r	♥ (15 mol %) 5 mol %) yl-pivalát t, 24 h	R^1 R^2 R^3
#	R ¹	R ²	R ³	Výtěžek (%)	ee (%)
1	Me			74	90
2	Et		Н	84	88
3	$(CH_2)_2$ -Ph			41	90
4			Me	60	94
5			Et	54	96
6		Me	C ₈ H ₁₇	51	96
7	Me		(CH ₂) ₂ -Ph	49	96
8			Bn	46	94
9			Ph	40	92
10			iPr	45	96
11			CH ₂ -Si(Me) ₃	19	94

Tabulka 11: Palladiem katalyzovaná enantioselektivní alkenylace trisubstituovaných allylových alkenolů [21].

Byla též rozšířena paleta substrátů o různé cyklické i necyklické alkenyltrifláty. Vliv struktury příslušného triflátu na výtěžky i enantioselektivitu byl minimální (Tabulka 12) [21].

	Ц	⁵ CF ₃ - <i>t</i> Bu-PyOx (15 mol %)	P
		Pd ₂ (dba) ₃ (5 mol %)	
	Me ^z Y OH Me	۔ Li ₂ CO ₃ , ethyl-pivalát 3 Å MS, rt, 24 h	Me ^r Me ^r Me
#	R	Výtěžek	(%) ee (%)
1	O Et	\$	92
2	O Bn	<u>د</u>	96
3	O i-Pr	۶4 ۲۰	92
4	O Br	22	90
5		87	88
6	o to	. 86	84
7	COOEt	72	82
8	EtOOC	56 يو	94
9	Me ₃ Si EtOOC	કર્પ કર્પ	80
10		58 COOEt	82

Tabulka 12: Rozšíření palety substrátů o cyklické i necyklické alkenyltrifláty [21].

V roce 2016 publikoval Correia a kol. studii palladiem katalyzované intermolekulární enantioselektivní desymetrizaci cyklopentenolu spojenou s reakcí Heckova typu [22]. Reakce dosahovala vysokých výtěžků s velmi vysokými enantioselektivitami (Tabulka 13) [22].

он	⁵ C ⊕⊖ N ₂ BF ₄	F ₃ - <i>t</i> Bu-PyOx (3 mol %) Pd(TFA) ₂ (2,5 mol %) DTBMP	ОН
F		2% MeOH/toluen 40 °C, 1-2 h	R
#	R	Výtěžek (%)	ee (%)
1	4-C1	92	99
2	4-OMe	81	94
3	3-OMe	84	97
4	2-OMe	90	94
5	2-ОН	51	86
6	Н	85	97
7	3,4-Cl ₂	76	97
8	3-NO ₂	86	96
9	2-NO ₂	72	97
10	4-CF ₃	61	99
11	3-CF ₃	76	98
12	2-CF ₃	66	96

Tabulka 13: Palladiem katalyzovaná intermolekulární enantioselektivní desymetrizace cyklopentenolu spojená s reakcí Heckova typu [22].

3 Cíl bakalářské práce

- 1. Provedení literární rešerše týkající se využití palladnatých komplexů (*S*)-4-(*terc*-butyl)-2-(5-(trifluormethyl)pyridin-2-yl)-4,5-dihydrooxazolu v organické syntéze.
- Příprava 3 vybraných derivátů (S)-4-(*terc*-butyl)-2-(5-(trifluormethyl)pyridin-2-yl)-4,5-dihydrooxazolu a testování jejich katalytické účinnosti v kombinaci s trifluoroctanem palladnatým pro modelovou adici vybrané boronové kyseliny na cyklický ketimin.

4 EXPERIMENTÁLNÍ ČÁST

4.1 Hmotnostní spektrometrie ve vysokém rozlišení (HRMS)

Hmotnostní spektra ve vysokém rozlišení byla měřena metodou ,dried droplet' hmotnostním spektrometrem s MALDI ionizací LTQ Orbitrap XL (Thermo Fisher Scientific, Bremen, Germany) vybaveného dusíkovým UV laserem (337 nm, 60 Hz). Jako matrice byla použita kyselina 2,5-dihydroxybenzoová. Spektra byla měřena v režimu pozitivních iontů s rozlišením 100 000 při m/z= 400, přičemž výsledné spektrum bylo tvořené průměrem ze všech měření.

4.2 Nukleární magnetická rezonance (NMR)

NMR spektra připravených sloučenin byla měřena při laboratorní teplotě na přístroji Bruker AscendTM při 500,13 MHz (¹H) a 125,12 MHz (¹³C). ¹H NMR spektra byla pro roztoky látek v CDCl₃ kalibrována na tetramethylsilan (δ 0,00 ppm). ¹³C NMR spektra byla kalibrována na středový signál multipletu rozpouštědla (δ 77,16 ppm v CDCl₃) a byla měřena s protonovým dekaplingem.

4.3 Infračervená spektroskopie (FT-IR)

Charakterizace sloučenin pomocí infračervené spektroskopie byla provedena na přístroji FT-IR Nicolet iS50, technikou zeslabené úplné reflektance (ATR) s jednoodrazovým diamantovým krystalem ve střední oblasti infračerveného spektra, v rozsahu vlnočtu 4000–400 cm⁻¹ a se spektrálním rozlišením 4 cm⁻¹. V případě absence charakteristických pásů v oblasti absorpce diamantového krystalu (2400–1900 cm⁻¹) byla tato oblast ze spekter odstraněna.

4.4 Chirální HPLC

Chirální HPLC separace byly provedeny na přístroji HPLC s UV-VIS diodovým polem (200–800 nm) SYKAM 3240 a s chirální kolonou Chiralpak AD-H.

4.5 Příprava sloučenin

Chemikálie byly získané od společnosti Fluorochem, TCI, Penta a byly používané bez dalšího čištění. Sloupcová chromatografie byla provedena na silikagelu (SiO₂ 60, velikost částic 0,040–0,063 mm, Merck) s použitím komerčně dostupných rozpouštědel. Preparativní flash chromatografie byla provedena na přístroji Buchi Reveleris[®] X2 Flash Chromatography vybavené ELSD a UV-VIS detektorem. Tenkovrstvá chromatografie byla provedena na hliníkových destičkách potažených silikagelem SiO₂ s vizualizací UV lampou (254 nebo 366 nm). Body tání byly stanoveny na přístroji Buchi B-540 v otevřených kapilárách.

4.5.1 Příprava (S)-4-(*terc*-butyl)-2-(3-chlor-5-(trifluormethyl)pyridin-2-yl)-4,5dihydrooxazolu (L¹)

Do Schlenkovy nádoby byl předložen ZnCl₂ (4 g; 29,35 mmol), roztaven pod vakuem a následně ochlazen pod N₂. Do srdcovky byl navážen 3-chlor-5-(trifluormethyl)pyridin-2karbonitril (2 g; 9,682 mmol), (*S*)-*terc*-leucinol (1,70 g; 14,52 mmol) a stěny byly opláchnuty pomocí Ph-Cl (20 ml). Srdcovka byla opatřena septem a degasována N₂ po dobu 10 min. Obsah srdcovky byl převeden kanylou do Schlenkovy baňky a následně byl místo septa instalován chladič. Stále se pracuje pod nátokem N₂. Reakční směs byla refluxována 72 h při 160 °C. Po odreagování výchozích látek byla reakční směs převedena do dělící nálevky. Nerozpuštěný ZnCl₂ byl rozpuštěn 10% roztokem NaOH (100 ml). Vodná fáze byla extrahována DCM (4 × 50 ml), spojená organika byla následně promyta vodou (2 × 50 ml), vysušena Na₂SO₄, zfiltrována a odpařena za sníženého tlaku na vakuové odparce. Bylo získáno 2,9 g L¹ ve formě tmavě hnědého oleje (výtěžek 98 %).

¹H NMR (400 MHz, CDCl₃) δ 8,77 (s, 1H), 8,00 (s, 1H), 4,41 (dd, J₁=10,13 Hz, J₂=1,62 Hz, 1H) 4,27 (t, J=8,40 Hz, 1H), 4,17 (dd, J1=10,25 Hz, J2=1,85 Hz, 1H), 0,95 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 159,48, 148,83, 144,02 (q, J=3,93 Hz), 135,72 (q, J=3,60 Hz), 132,18, 128,40 (q, J=33,85 Hz), 122,08 (q, J=275,68 Hz), 77,31, 69,31, 33,98, 25,90.

FT-IR (ATR) cm⁻¹: 2957, 2906, 2871, 1679, 1479, 1394, 1319, 1137, 1047, 912.

HRMS: vypočteno $[M+H]^+$ 307,08250; Nalezeno $[M+H]^+$ 307,08279; $\Delta = 0,94$ ppm.

4.5.2 Příprava (S)-2-(3-(benzyloxy)-5-(trifluormethyl)pyridin-2-yl)-4-(*terc*-butyl)4,5-dihydrooxazolu (L²)

Do Schlenkovy nádoby byl předložen NaH (59 mg; 60 % disperze v minerálním oleji). Aparatura byla opakovaně evakuována a zpětně naplněna N₂ (3 × zopakovat). Do nádoby byl přidán suchý DMF (2 ml), pomalu přikapáván BzOH (106 mg; 0,9802 mmol) při 0 °C a následně byl nadávkován L¹ (300 mg; 0,9781 mmol). Reakční směs byla zahřívána 2 h na 40 °C a následně do ní bylo přidáno 5 ml destilované vody. Poté byla reakční směs extrahována s CHCl₃ (3 × 10 ml), spojená organika byla následně promyta vodou (3 × 10 ml), vysušena Na₂SO₄, zfiltrována a odpařena za sníženého tlaku. Následně byla reakční směs přečištěna pomocí sloupcové chromatografie s mobilní fází H:EA (4:1 + 5 % TEA), čímž bylo získáno 330 mg L² ve formě nažloutlé pevné látky (výtěžek 89 %).

b.t. 95-97 °C

¹H NMR (500 MHz, CDCl₃) δ 8,54 (s, 1H), 7,54 (s, 1H), 7,51 (d, J=7,29 Hz), 7,40-7,29 (m, 3H), 5,21 (dd, J₁=11,40 Hz, J₂=11,90 Hz, 2H), 4,41 (dd, J₁=9,73 Hz, J₂=1,65 Hz, 1H), 4,25-4,17 (m, 2H), 0,94 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 159,60, 154,29, 141,15, 137,6 (q, J=4,21 Hz), 135,04, 128,75, 128,61 (q, J=33,11 Hz), 128,52, 127,57, 122,96 (q, J=272,96 Hz), 117,59 (q, J=3,62 Hz), 77,44, 71,25, 68,72, 34,00, 25,98.

FT-IR (ATR) cm⁻¹: 3065, 2958, 2869, 1650, 1424, 1378, 1329, 1251, 1131, 1100, 1016, 930, 732, 627.

HRMS m/z: vypočteno $[M+H]^+$ 379,16279; Nalezeno $[M+H]^+$ 379,163868; $\Delta = 2,84$ ppm.

4.5.3 Příprava 4-(*terc*-butyl)-2-(3-fenyl-5-(trifluormethyl)pyridin-2-yl)-4,5dihydrooxazolu (L³)

Do 100 ml baňky byl předložen L^1 (0,5 g; 1,63 mmol), PhB(OH)₂ (0,278 g; 2,282 mol), Na₂CO₃ (0,345 g; 3,26 mmol) a 60 ml směsi THF:voda (4:1). Směs byla degasována N₂ po dobu 20 min a následně byl přidán Pd(PPh₃)₄ (94 mg; 0,0815 mmol), Xantphos (57 mg; 0,0978 mmol). Směs byla opět degasována N₂ po dobu 10 min. Reakční směs byla refluxována pod N₂ po dobu 24 h, po ochlazení na laboratorní teplotu byla přefiltrována přes plug silikagelu, promyta s EtOAc a odpařena na rotační vakuové odparce. Surová reakční směs byla přečištěna pomocí preparativní flash chromatografie s mobilní fází H:EA (4:1 + 5 % TEA). Bylo získáno 0,49 g (výtěžek 89 %) L³ ve formě bílé pevné látky.

b.t. 64-65 °C

¹H NMR (500 MHz, CDCl₃) δ 8,54 (s, 1H), 7,54 (s, 1H), 7,51 (d, J=7,29 Hz), 7,40-7,29 (m, 3H), 5,21 (q, J=11,42 Hz, 2H), 4,41 (dd, J₁=9,73 Hz, J₂=1,65 Hz, 1H), 4,25-4,17 (m, 2H), 0,94 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ 159,60, 154,29, 141,15, 137,6 (q, J=4,21 Hz), 135,04, 128,75, 128,61 (q, J=33,11 Hz), 128,52, 127,57, 122,96 (q, J=272,96 Hz), 117,59 (q, J=3,62 Hz), 77,44, 71,25, 68,72, 34,00, 25,98.

FT-IR (ATR) cm⁻¹: 3065, 2958, 2869, 1650, 1424, 1378, 1329, 1251, 1131, 1100, 1016, 930, 732, 627.

HRMS m/z: vypočteno $[M+H]^+$ 349,15222; Nalezeno $[M+H]^+$ 349,152437; $\Delta = 0,62$ ppm.

4.5.4 Příprava methyl-(S)-4-(2-(4-(*terc*-butyl)-4,5-dihydrooxazol-2-yl)-5-(trifluormethyl)pyridin-3-yl)benzoátu (L⁴)

Do Schlenkovy baňky s magnetickým míchadlem byl předložen L¹ (1,5 g; 4,89 mmol; 1 eq), 4-methoxykarbonylfenylboronová kyselina (1,32 g; 7,33 mmol; 1,5 eq), K₃PO₄ (2,1 g; 9,89 mmol; 2 eq), Pd(PPh₃)₄ (0,282 g; 0,12 mmol; 5 mol %) a Xantphos (0,169 g; 0,29 mmol; 6 mol %). Aparatura byla opakovaně evakuována a zpětně naplněna N₂ (3 × zopakovat). Pod inertní atmosférou byl přidán suchý toluen a reakční směs byla zahřívána na 105 °C. Po 24 h byla reakční směs přefiltrována přes plug celitu na fritě, promyta s EtOAc a odpařena. Následně byla reakční směs přečištěna pomocí preparativní flash chromatografie s mobilní fází H:EA (4:1 + 5 % TEA). Bylo získáno 1,54 g L⁴ ve formě bílé pevné látky (výtěžek 78 %).

b.t. 123-124 °C.

¹H NMR (500 MHz, CDCl₃) δ ppm: 8,95 (s, 1H), 8,09 (d, J=8,43 Hz, 2H), 7,95 (s, 1H), 7,46 (d, J=8,05 Hz, 2H), 4,28-4,22 (m, 1H), 4,01-3,98 (m, 2H), 3,95 (s, 1H), 0,82 (s, 9H).

¹³C NMR (126 MHz, CDCl₃) δ ppm: 166,70, 161,54, 149,29, 145,51 (q, J=3,93 Hz), 141,94, 137,39, 135,40 (q, J=3,43 Hz), 130,31, 129,75, 128,87, 127,56 (q, J=33,54 Hz), 123,08 (q, J=272,29 Hz), 69,54, 52,47, 33,89, 26,07.

FT-IR (ATR) cm-1: 2958, 2904, 2870, 1726, 1679, 1419, 1346, 1275, 1108, 1032, 951, 775, 705.

HRMS m/z: vypočteno $[M+H]^+$ 407,15770; Nalezeno $[M+H]^+$ 407,158034; $\Delta = 0.82$ ppm.

4.5.5 Příprava 3-butyl-3-(*m*-tolyl)-2,3-dihydrobenzo[*d*]isothiazol-1,1-dioxidu

Do 20 ml zkumavky byl předložen příslušný ligand L^2-L^4 (7,5 mol %), Pd(TFA)₂ (5,2 mg; 0,0156 mmol; 5 mol %) a TFE (1,5 ml). Směs byla komplexována při laboratorní teplotě 2 h. Následně byl ke směsi přidán 3-butylbenzo[*d*]isothiazol-1,1-dioxid (70 mg; 0,3135 mmol; 1 eq) a 3-tolylboronová kyselina (64 mg; 0,4707 mmol; 1,5 eq). Stěny zkumavky byly opláchnuty 1 ml TFE. Následně byla reakční směs míchána při 40 °C 12–24 h v pískové lázni. Reakční směs byla odpařena na vakuové odparce a čištěna pomocí preparativní chromatografie (PE:EA; 5:1). Bylo získáno 96,9 mg (výtěžek 98 %) s ee 93 % při použití L^4 , 97,2 mg (výtěžek 98 %) s ee 93 % při použití L^3 , 79,1 mg (výtěžek 80 %) s ee 91 % při použití L^2 .

¹H NMR (500 MHz, CDCl₃) δ ppm: 7,78 (d, J=7,76 Hz, 1H), 7,57 (t, J=7,50 Hz, 1H), 7,51 (t, J=7,50 Hz, 1H), 7,33-7,32 (m, 2H), 7,27-7,23 (m, 2H), 7,10 (d, J=7,43 Hz, 1H), 4,78 (s, 1H), 2,40 (td, J₁=13,84 Hz, J₂=4,28 Hz, 1H), 2,34 (s, 3H), 2,29 (td, J₁=13,60 Hz, J₂=4,56 Hz, 1H), 1.51-1.42 (m, 1H), 1.39-1.31 (m, 2H), 1.07-0.98 (m, 1H), 0.88 (t, J=7,34 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 143,77, 142,47, 138,93, 134,54, 133,55, 129,38, 129,05, 129,00, 126,84, 124,55, 123,23, 121,50, 68,98, 40,30, 26,26, 22,84, 21,81, 14,02.

Chirální HPLC: Podmínky separace byly zjištěny za použití racemické formy sloučeniny. Chiralpak AD-H, hexan:^{*i*}PrOH 70:30, 0,8 ml/min; (*R*)-izomer $t_r=18,19$ min; (*S*)-izomer $t_r=13,88$ min.

5 VÝSLEDKY A DISKUSE

V rámci výzkumu prováděného v naší skupině bylo zjištěno, že pro adici boronových kyselin na cyklické *N*-sulfonyl ketiminy je možné využít mimo v literatuře popsaného ligandu *t***Bu-Nicox** také ⁵**CF**₃-*t***Bu-Pyox** při zachování klíčových parametrů – konverze i enantioselektivity reakce (Schéma 4) [23,24].

Schéma 4: Adice boronové kyseliny na cyklický N-sulfonyl ketimin.

Cílem této práce je prostudovat vliv strukturních modifikací základního skeletu ligandu v poloze 3- na konverzi a enantioselektivitu modelové reakce (Schéma 5). Výsledky takovýchto katalytických experimentů jsou klíčové pro určení, zda bude poloha 3- vhodná pro připojení kotvící skupiny pro případné zakotvení ligandu na pevný nosič.

Schéma 5: Struktura (S)-4-(terc-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazolu.

5.1 Návrh a syntéza ligandů

Základní sloučeninou pro syntézu 3-substituovaných derivátů ⁵CF₃-*t*Bu-PyOx ligandu je 3chlor-5-(trifluormethyl)pyridin-2-karbonitril, který byl podroben kondenzační reakci s komerčně dostupným (*S*)-*terc*-leucinolem (Schéma 6). Byl získán (*S*)-4-(*terc*-butyl)-2-(3chlor-5-(trifluormethyl)pyridin-2-yl)-4,5-dihydrooxazol (L¹) v téměř kvantitativním výtěžku. Získaný L¹ nese reaktivní vazbu C–Cl, která může být podrobena dalším reakcím. Dostupnost zmíněné základní sloučeniny nabízí možnost zakotvení tohoto ligandu na pevný nosič s tím, že je potřeba nejprve vyloučit nežádoucí vliv substituentů v prostorové blízkosti oxazolinového cyklu a zároveň možný vliv elektronických efektů substituentů.

První strukturní obměna byla provedena reakcí L^1 s benzylalkoholátem sodným (připraveným *in situ* působením NaH na benzylalkohol) ve smyslu nukleofilní aromatické substituce, která poskytla ligand L^2 ve výborném výtěžku 89 % (Schéma 6).

Schéma 6: Syntéza ligandů.

Druhou strukturní obměnou byla tvorba C–C vazby pomocí Suzukiho-Miyaurova cross-couplingu, kde pro vznik produktu byl klíčovým aditivem Xantphos ligand. Tímto způsobem byl do polohy 3- zaveden nejprve fenyl a příslušný ligand L^3 byl získán ve výtěžku 89 % (Schéma 6). Druhým arylem, jehož zavedení bylo prověřeno, byla elektronakceptorní 4-methoxykarbonylfenyl skupina, jejíž zavedení (vzhledem k hydrolytické labilitě) vyžadovalo mírnou úpravu reakčních podmínek a cílový ligand L^4 byl získán v o něco nižším výtěžku 78 % (Schéma 6).

5.2 Testování katalytické aktivity

Připravené ligandy byly dále využity v katalytické reakci v kombinaci s trifluoroctanem palladnatým pro adici komerčně dostupné 3-tolylboronové kyseliny na cyklický *N*-sulfonyl ketimin dostupný v naší laboratoři. Vlastní katalytická reakce probíhala tak, že v 2,2,2-trifluorethanolu (TFE) byl rozpuštěn ligand a trifluoroctan palladnatý. Po vytvoření komplexu (1 h) byly přidány obě výchozí látky a následně byla reakční směs míchána při 40 °C. Průběh reakce byl monitorován pomocí tenkovrstvé chromatografie. Po vymizení výchozí látky byla reakční směs odpařena. Pomocí ¹H NMR byla stanovena konverze a produkt byl purifikován pomocí flash chromatografie. Čisté produkty byly podrobeny HPLC analýze pro určení jejich enantiomerní čistoty.

Z výsledků je patrné, že v případě využití všech tří ligandů L^2-L^4 reakce probíhala s vysokou enantioselektivitou (Tabulka 14). Ligand L^2 nesoucí benzyloxyskupinu, která má elektrondonorní charakter se projevil ve významném snížení reaktivity a drobném poklesu enantioselektivity (Tabulka 14).

Ligandy L³ i L⁴ poskytly produkty ve srovnatelných parametrech v porovnání s výsledky *t*Bu-Nicox ligandu z lit. i v naší skupině dříve testovaného ⁵CF₃-*t*Bu-PyOx (Tabulka 14). Bylo pozorováno pouze minimální snížení enantioselektivity (95 \rightarrow 93 % ee) a tak se otevírá možnost zakotvení ⁵CF₃-*t*Bu-PyOx na pevný nosič přes arylový můstek právě v poloze 3-.

0 1/2 N + B(OH) ₂	Ligand (Pd(TFA) TFE,	(7,5 mol %) <u>2 (5 mol %)</u> 40 °C		
Ligand	Čas (h)	Konverze (%)	ee (%)	
L ²	24	86	91	
L ³	12	>99	93	
L ⁴	12	>99	93	
tBu-Nicox [23]	12	99	95	
⁵ CF ₃ - <i>t</i> Bu-PyOx [24]	12	99	95	

Tabulka 14: Katalytická aktivita připravených ligandů.

6 ZÁVĚR

Byla provedena literární rešerše shrnující nejnovější poznatky týkající se aplikace palladnatých komplexů (*S*)-4-(*terc*-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5- dihydrooxazolu.

V experimentální části byly připraveny 3 deriváty (S)-4-(*terc*-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazol, kde byly v poloze 3- připojeny benzyloxy, fenyl a 4-methoxykarbonylfenyl skupiny.

Připravené ligandy byly testovány v kombinaci s trifluoroctanem palladnatým jako katalyzátory pro asymetrickou adici arylboronových kyselin na cyklické *N*-sulfonyl ketiminy. Ukázalo se, že benzyloxy skupina významně snižuje reaktivitu s poklesem enantioselektivity (95 \rightarrow 91 % ee). Na druhé straně fenyl a 4-methoxykarbonylfenyl skupina rychlost reakce v porovnání s nesubstituovaným ligandem neovlivňuje a dochází pouze k minimálnímu ovlivnění enantioselektivity (95 \rightarrow 93 % ee).

Byl prověřen vliv substituce v poloze 3- na katalytické vlastnosti a poloha 3- tak byla označena jako možné místo pro imobilizaci (*S*)-4-(*terc*-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazolu, což bude předmětem dalšího výzkumu.

7 PŘEHLED POUŽITÉ LITERATURY

- [1] G. Yang, W. Zhang, Renaissance of pyridine-oxazolines as chiral ligands for asymmetric catalysis, Chem. Soc. Rev. 47 (2018) 1783–1810. https://doi.org/10.1039/C7CS00615B.
- [2] H. Brunner, U. Obermann, P. Wimmer, Asymmetrische katalysen: XXXII. Enantioselektive phenylierung von cis-cyclohexan-1,2-diol und mesobutan-2,3-diol, J. Organomet. Chem. 316 (1986) C1–C3. https://doi.org/10.1016/0022-328X(86)82093-9.
- [3] E.W. Werner, T.-S. Mei, A.J. Burckle, M.S. Sigman, Enantioselective Heck Arylations of Acyclic Alkenyl Alcohols Using a Redox-Relay Strategy, Science. 338 (2012) 1455–1458. https://doi.org/10.1126/science.1229208.
- [4] C. Pezzetta, D. Bonifazi, R.W.M. Davidson, Enantioselective Synthesis of N-Benzylic Heterocycles: A Nickel and Photoredox Dual Catalysis Approach, Org. Lett. 21 (2019) 8957–8961. https://doi.org/10.1021/acs.orglett.9b03338.
- [5] J.-Y. Guo, Y. Minko, C.B. Santiago, M.S. Sigman, Developing Comprehensive Computational Parameter Sets To Describe the Performance of Pyridine-Oxazoline and Related Ligands, ACS Catal. 7 (2017) 4144–4151. https://doi.org/10.1021/acscatal.7b00739.
- [6] D.P. Hickey, C. Sandford, Z. Rhodes, T. Gensch, L.R. Fries, M.S. Sigman, S.D. Minteer, Investigating the Role of Ligand Electronics on Stabilizing Electrocatalytically Relevant Low-Valent Co(I) Intermediates, J. Am. Chem. Soc. 141 (2019) 1382–1392. https://doi.org/10.1021/jacs.8b12634.
- [7] J. Bartáček, J. Váňa, P. Drabina, J. Svoboda, M. Kocúrik, M. Sedlák, Recoverable polystyrene-supported palladium catalyst for construction of all-carbon quaternary stereocenters via asymmetric 1,4-addition of arylboronic acids to cyclic enones, React. Funct. Polym. 153 (2020) 104615. https://doi.org/10.1016/j.reactfunctpolym.2020.104615.
- [8] J. Bartáček, J. Svoboda, M. Kocúrik, J. Pochobradský, A. Čegan, M. Sedlák, J. Váňa, Recent advances in palladium-catalysed asymmetric 1,4–additions of arylboronic acids to conjugated enones and chromones, Beilstein J. Org. Chem. 17 (2021) 1048–1085. https://doi.org/10.3762/bjoc.17.84.
- [9] J. Wahlers, M. Maloney, F. Salahi, A.R. Rosales, P. Helquist, P.-O. Norrby, O. Wiest, Stereoselectivity Predictions for the Pd-Catalyzed 1,4-Conjugate Addition Using Quantum-Guided Molecular Mechanics, J. Org. Chem. 86 (2021) 5660–5667. https://doi.org/10.1021/acs.joc.1c00136.
- [10] C.L. Wagner, G. Herrera, Q. Lin, C.T. Hu, T. Diao, Redox Activity of Pyridine-Oxazoline Ligands in the Stabilization of Low-Valent

Organonickel Radical Complexes, J. Am. Chem. Soc. 143 (2021) 5295– 5300. https://doi.org/10.1021/jacs.1c00440.

- [11] S.-Y. Xu, R. Zhang, S.-S. Zhang, C.-G. Feng, Enantioselective synthesis of 3-aryl-phthalides through a nickel-catalyzed stereoconvergent crosscoupling reaction, Org. Biomol. Chem. 19 (2021) 4492–4496. https://doi.org/10.1039/D1OB00487E.
- [12] Z.-X. Tian, J.-B. Qiao, G.-L. Xu, X. Pang, L. Qi, W.-Y. Ma, Z.-Z. Zhao, J. Duan, Y.-F. Du, P. Su, X.-Y. Liu, X.-Z. Shu, Highly Enantioselective Cross-Electrophile Aryl-Alkenylation of Unactivated Alkenes, J. Am. Chem. Soc. 141 (2019) 7637–7643. https://doi.org/10.1021/jacs.9b03863.
- [13] C. Sandford, L.R. Fries, T.E. Ball, S.D. Minteer, M.S. Sigman, Mechanistic Studies into the Oxidative Addition of Co(I) Complexes: Combining Electroanalytical Techniques with Parameterization, J. Am. Chem. Soc. 141 (2019) 18877–18889. https://doi.org/10.1021/jacs.9b10771.
- [14] T.-S. Mei, E.W. Werner, A.J. Burckle, M.S. Sigman, Enantioselective Redox-Relay Oxidative Heck Arylations of Acyclic Alkenyl Alcohols using Boronic Acids, J. Am. Chem. Soc. 135 (2013) 6830–6833. https://doi.org/10.1021/ja402916z.
- [15] Y.-P. He, J. Cao, H. Wu, Q. Wang, J. Zhu, Catalytic Enantioselective Aminopalladation–Heck Cascade, Angew. Chem. Int. Ed. 60 (2021) 7093– 7097. https://doi.org/10.1002/anie.202016001.
- [16] G. Chen, J. Cao, Q. Wang, J. Zhu, Desymmetrization of Prochiral Cyclopentenes Enabled by Enantioselective Palladium-Catalyzed Oxidative Heck Reaction, Org. Lett. 22 (2020) 322–325. https://doi.org/10.1021/acs.orglett.9b04357.
- [17] M. Sun, H. Wu, X. Xia, W. Chen, Z. Wang, J. Yang, Asymmetric Palladium-Catalyzed C–H Functionalization Cascade for Synthesis of Chiral 3,4-Dihydroisoquinolones, J. Org. Chem. 84 (2019) 12835–12847. https://doi.org/10.1021/acs.joc.9b01372.
- [18] Z.-M. Chen, J. Liu, J.-Y. Guo, M. Loch, R.J. DeLuca, M.S. Sigman, Palladium-catalyzed enantioselective alkenylation of alkenylbenzene derivatives, Chem. Sci. 10 (2019) 7246–7250. https://doi.org/10.1039/C9SC02380A.
- [19] Q. Yuan, M.S. Sigman, Palladium-Catalyzed Enantioselective Relay Heck Arylation of Enelactams: Accessing α,β-Unsaturated δ-Lactams, J. Am. Chem. Soc. 140 (2018) 6527–6530. https://doi.org/10.1021/jacs.8b02752.
- [20] Z.-Z. Jiang, A. Gao, H. Li, D. Chen, C.-H. Ding, B. Xu, X.-L. Hou, Enantioselective Synthesis of Chromenes via a Palladium-Catalyzed

Asymmetric Redox-Relay Heck Reaction, Chem. Asian J. 12 (2017) 3119–3122. https://doi.org/10.1002/asia.201701504.

- [21] C. Zhang, B. Tutkowski, R.J. DeLuca, L.A. Joyce, O. Wiest, M.S. Sigman, Palladium-catalyzed enantioselective Heck alkenylation of trisubstituted allylic alkenols: a redox-relay strategy to construct vicinal stereocenters, Chem. Sci. 8 (2017) 2277–2282. https://doi.org/10.1039/C6SC04585E.
- [22] J. de Oliveira Silva, R.A. Angnes, V.H. Menezes da Silva, B.M. Servilha, M. Adeel, A.A.C. Braga, A. Aponick, C.R.D. Correia, Intermolecular Noncovalent Hydroxy-Directed Enantioselective Heck Desymmetrization of Cyclopentenol: Computationally Driven Synthesis of Highly Functionalized cis-4-Arylcyclopentenol Scaffolds, J. Org. Chem. 81 (2016) 2010–2018. https://doi.org/10.1021/acs.joc.5b02846.
- [23] G. Yang, W. Zhang, A Palladium-Catalyzed Enantioselective Addition of Arylboronic Acids to Cyclic Ketimines, Angew. Chem. Int. Ed. 52 (2013) 7540–7544. https://doi.org/10.1002/anie.201302861.
- [24] M. Kocúrik, J. Bartáček, M. Sedlák, Nepublikované výsledky, (2022).

8 PŘÍLOHY

						i abie (enical	<i>b b c c c c c c c c c c</i>
	Reten. Time	Area	Height	Area	Height	W05	Peak Purity
	[min]	[mAU.s]	[mAU]	[%]	[%]	[min]	[-]
1	13,717	552,129	18,420	3,2	3,8	0,47	766
2	17,942	16823,217	469,029	96,8	96,2	0,56	725
	Total	17375,346	487,449	100,0	100,0		