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Abstract 

Performance of the differential and integral isoconversional methods of kinetic 

analysis was evaluated for complex processes with overlapping independent or consequent 

reaction mechanisms. Novel way of combined interpretation of the activation energy 

dependences provided by both differential and integral methods was developed, enabling 

precise determination of the true activation energies of the overlapping sub-processes. 

Fundamental part of this evaluation method is based on the existence of point of inflexion 

following the overshoot effect on the differential isoconversional dependence of activation 

energy on the degree of conversion. This point of inflexion was found to very well coincide 

with the higher activation energy. The lower true activation energy can be always determined 

from the integral isoconversional dependence. Universal pattern for interpretation of the 

isoconversional kinetic methods behavior was confirmed for all sub-processes with 

asymmetry in the range of <-0.35; 0.35>, covering majority of real-life data. 
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1. Introduction 

Major portion of experimentally observed solid-state processes can be denoted as 

kinetically complex, i.e. in these reactions/transformations multiple kinetic mechanisms 

proceed simultaneously or their occurrence at least partially overlaps. Nature of the 

complexity can vary greatly. The occurring kinetic mechanisms can be associated with 

entirely different chemical reactions (e.g. overlapping melting and decomposition) [1-5], 

same type of transformation but with different products (e.g. formation of multiple crystalline 

phases from a glass) [6-10], or even similar product being formed but under different 

spatially-conditioned circumstances (e.g. similar reaction proceeding at the surface and in the 

volume of the material) [11-15]. Such large variety of kinetic complexity can often result in 

the overlap of processes with significantly different activation energies. In such case it is 

usually the isoconversional methods that are used for evaluation of the respective apparent 

activation energies E in dependence on the degree of conversion α. Fundamental basis of 

these methods lies in a simultaneous evaluation of a series of measurements performed at 

different heating rates, where for each selected α value a corresponding E value is calculated. 

All these methods originate from the base kinetic equation for the transformation rate 

dα/dt [16, 17]:   

(1) 

where α is the degree of conversion, t is time, T is temperature, f(α) is a substitute for a kinetic 

model, I is the integrated area under the kinetic peak, A is the pre-exponential factor and E is 

the apparent activation energy of the process. Typologically, there are several types of 

isoconversional methods. Differential isoconversional methods utilize the base kinetic 

equation in its differential form (Eq. 1) and as such do not introduce any approximations to 

the evaluation – the most well-known representative of the differential isoconversional 

methods is the Friedman method (Eq. 2) [18]:    

  feAIdtd RTE  
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(2) 

where (dα/dt)α and Tα are the conversion rate and temperature corresponding to arbitrarily 

chosen values of conversion α. This method can be used for any temperature program – 

isothermal, non-isothermal heating or cooling, complex step-wise programs, etc.; the only 

requirement is based on accurate determination of the quantities corresponding to the 

arbitrarily chosen values of α. In practice this can lead to lower accuracy due to the (dα/dt)α 

term, which can be affected by e.g. subtraction of the thermokinetic background, quantity I 

(e.g. characteristic enthalpy associated with the process in case of the calorimetric 

measurements) being temperature dependent, or differentiation procedure in case of the 

default integral data.  

 Integral isoconversional methods, on the other hand, originate from the integral form 

of Eq. 1 and utilize various approximations to solve the arising temperature integral g(α). The 

first, rigid integral isoconversional methodologies were developed for the standard linear 

heating programs (the approximations of g(α) involved integration over temperature) and are 

based on simple linearization procedures; most often used methods that fall in this category 

are: OFW (Eq. 3) [19], KAS (Eq. 4) [20] or Starink (Eq. 5) [21]. More recently developed 

integral isoconversional methods provide increased accuracy by utilizing non-linear 

optimization, and (by employing integration over time) can be applied to data obtained under 

various temperature programs; one of the more commonly used methods from this rank is the 

one represented by Eqs. 6 and 7 [22]. However, these methods do not take a priori into 

account the potential (and quite common) variation of E with α. This issue is addressed by the 

pseudo-differential (still integral in nature) method represented by Eq. 8 [23], where the 

integration assuming constant E is performed only over small time intervals.  

(3) 
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 Despite the decades of usage of these equations for evaluation of complex kinetic data, 

the interpretation of the obtained E-α dependences is still not perfected. Note that the raw E-α 

dependences can be used for the predictions of the overall course of the complex process, but 

the values of individual activation energies attributed to the particular sub-processes can be 

difficult to extract from the overall dependence. In addition, the differential and integral 

isoconversional methods were always only compared regarding their accuracy and precision, 

and never considered to be complementary. In the present paper the theoretical simulations 

will be used to investigate the behavior of the differential and integral isoconversional 

methods under different complex process scenarios. New approach to the activation energy 

determination for the individual sub-processes will be introduced, based on the simultaneous 

utilization of the differential and integral isoconversional methods.  

 

2. Theoretical simulations 
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methodologies for determining the activation energy from non-isothermal analysis without the 

need of using multiple proprietary software and that can offer all the advantages of a scripting 

language. Note that for all calculations the data were interpolated so that the kinetic triplets 

[T, dα/dt, α] correspond exactly to the pre-selected values of the conversion degree α. 

 

2.1. JMA processes datasets 

The base theoretically simulated datasets used to imitate various complex kinetics 

scenarios were based on the Johnson-Mehl-Avrami (JMA) [24-27] kinetics: 

(9) 

where m is the model kinetic exponent corresponding to the dimensionality of the process. 

The present work addresses independent and consequent/following processes (which have 

formally similar kinetic equations). For these processes the non-isothermal differential kinetic 

equation (derived from Eq. 1) can be written as: 

(10) 

where q
+
 is the applied heating rate. All JMA complex kinetics data were simulated for the 

following set of kinetic parameters: E1 = 50 kJ·mol
-1

, E2 = 300 kJ·mol
-1

, m1 = 2, m2 = 2, 

I1 = I2 = 0.50, A1 = 10
2.5

 s
-1

, A1 = 10
27

 s
-1

, and heating rates 0.5, 1, 2, 3, 4, 5, 6, 8, 11, 13, 16, 

25, 50, 75, 100, 150, 200, 300 and 400 °C/min. In order to cover different magnitude ratios of 

the sub-processes, two datasets were prepared under these conditions – one with I1 = 0.30 and 

I2 = 0.70, and the second with I1 = 0.70 and I2 = 0.30, respectively. 

 

2.2. AC processes datasets 

 As the JMA kinetics covers only a very narrow, characteristic range of peak 

asymmetries, the empirical autocatalytic Šesták-Berggren (AC) model [1] was employed to 

prepare datasets with different peak asymmetries. The AC model function is expressed as: 
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(11) 

where M and N are the kinetic exponents. Five different datasets were simulated (based on 

Eqs. 10 and 11) to cover majority of experimentally observed peak asymmetries, as well as 

situations with different E1/E2 ratios. Values of the kinetic parameters are for the five AC 

datasets listed in Table 1; within each dataset again the data-curves for heating rates 0.5, 1, 2, 

3, 4, 5, 6, 8, 11, 13, 16, 25, 50, 75, 100, 150, 200, 300 and 400 °C/min were simulated.  

 Note that the asymmetry is in the present article quantified via the Fraser-Suzuki 

equation [28-30]: 

(12) 

 

where a0, a1, a2 and a3 are the parameters corresponding to the amplitude, position, half-width 

and asymmetry of the peak (defined by x and y coordinates), respectively.  

 

3. Results 
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as well as full overlaps, where q
+
 from the middle of the considered range were used for the 

isoconversional analyses.  

Starting with the very weak overlaps, Fig. 1 shows the data for the two borderline 

JMA overlaps that occur when either the 0.5 – 3 °C·min
-1

 or the 150 – 400 °C·min
-1

 heating 

rate ranges are evaluated. As can be seen from the graphs with depicted complex data-curves 

(30/70 and 70/30 terms denote the I1/I2 ratio), the overlaps are indeed very small, where only 

two out of the four evaluated data-curves show few percent overlay (index “1” always 

corresponds to the smaller and wider peaks, and index “2” always corresponds to the tall 

sharp peaks). The corresponding right column graphs then show the resulting E-α 

dependences provided by the differential and integral isoconversional methods. Note that in 

all cases presented in this paper all the respective tested integral methods (Eqs. 3 – 7) and 

differential methods (i.e. methods providing differential type of output; Eqs. 2 and 8) gave 

extremely similar results (differences within 0.5 % for all integral methods; differences within 

2 % for the two differential methods). Thus, for practical purposes it does not matter whether 

one uses the very slightly more precise equations (see e.g. [31] for their classification), the 

shape of the E-α dependences and general conclusions derived from based on them will be the 

same. Therefore, only one representative from each group of equations (integral vs. 

differential) will be shown to improve clarity of the figures. Due to the very small overlaps 

the E-α dependences in Fig. 1 perfectly indicate both E1 and E2 as well as their 

correspondence to the particular set of sub-processes. In addition, also the I1/I ratio is very 

well indicated by the sharp increases/drops of the E-α dependences at α either 0.30 or 0.70, 

depending on the respective positions of the kinetic sub-peaks. To stress the relevancy of this 

information, the vertical dashed lines in the E-α graphs will always show the I1/I value 

(denoted also in the left-hand graphs) – in this way it is shown how the heating rate changes 
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the mutual position of the kinetic sub-processes with significantly different activation 

energies and, consequently, how the E-α dependences are changed. 

Results for the larger low-α (with respect to the sub-process No. 2, the one with higher 

E) overlaps are shown in Fig. 2; note the intentional selection of narrower (3 – 6 °C·min
-1

) 

and wider (3 – 11 °C·min
-1

) range of q
+
 demonstrating the negative effect of increased overlap 

that can be prevented by sole choice of data-curves included in the evaluation. The E-α 

dependences depicted in Fig. 2 show the most important difference between the integral and 

differential isoconversional methods – the existence of overshoots and undershoots in case of 

the differential methods, where the integral methods always provide only E values in-between 

the two activation energy limits (E1 and E2). This behavior of the differential methods is also 

crucial for the main point of the present article – determination of the true E1 and E2 values 

from the isoconversional E-α dependences. Whereas the low E limit is in Fig. 2 always clearly 

identifiable based on the E data from the integral methods, it is not the case for the upper E 

limit (E2). It can be, however, seen that the differential E-α dependence after its overshoot 

always intersects (as a rule of thumb) with the indicated true E2 value at the point where the 

convex part of the E-α dependence changes to the concave course (i.e. at the first point of 

inflexion after the overshoot). The second rule-of-thumb for interpretation of the E-α 

dependences is (as mentioned above) that the E values provided by the integral methods 

always lie in-between the true E1 and E2 values; in other words, the true value of higher E is 

always above the integral E-α dependence (which can help identify the correct point of 

inflexion – see the graph for I1/I2 = 70/30 and q
+
 range 3 – 11 °C·min

-1
). These two simple 

rules will now be tested and discussed throughout the paper for all other different cases of 

complex kinetics behavior. 

Graphs in Fig. 3 show the high-α overlaps (with respect to the sub-process No. 2, the 

one with higher E) and the corresponding differential and integral E-α dependences. The data 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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simulated for I1/I2 = 30/70 behave again in correspondence with the above suggested concept; 

the lower E limit is again indicated by the integral data whereas the upper E limit corresponds 

to the point of inflexion on the differential E-α dependence (note that for the high-α overlaps 

the I1/I2 ratio can be derived from the point where the differential data intersect with the low E 

limit). More difficult situation arises in case when the process with lower E is dominant with 

respect to I (the 70/30 cases for the present data). In case of larger overlaps with I1/I2 = 70/30 

no point of inflexion occurs on the differential E-α dependence before it intersects with the 

integral E-α data. In such case the upper E limit is always above the differential E-α 

dependence. Very rough estimate of the upper E limit could be made based on the magnitude 

of the high-E plateau on the integral E-α dependence: the larger/wider the plateau, the closer 

the upper E limit is to the top of the differential E-α dependence. However, the easiest (and 

most precise) way how to determine the upper E limit would in this case be the further 

reduction of evaluated q
+
 (by omitting the data-curves simulated for q

+
 lower than 50 °C·min

-

1
) resulting in smaller degree of overlap and the consequent change of the two isoconversional 

dependences towards their “standard” appearance. 

 The interpretation issue associated with the full overlaps where the lower-E process is 

the dominant one is further demonstrated in Fig. 4. The two cases with I1/I2 = 30/70 again 

behave and can be evaluated in the standard way. The situation with I1/I2 = 70/30 and all 

q
+
 being included is apparently massively distorted (with respect to estimation of the upper E 

limit) but could very easily solved simply by evaluating only selected data-curves. The most 

difficult issue arises for the case with I1/I2 = 70/30 and q
+
 range 8 – 16 °C·min

-1
. In this case, 

when only fully overlapping curves of the processes with significantly different E values and 

the lower-E process being dominant can be measured, there is no mathematic way or a 

processing trick that could be used to reliably and precisely determine the upper E limit via 
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utilization of isoconversional methods. Instead, one of the alternative methods needs to be 

used – these will be listed in section 4.1. 

 

4. Discussion 

 In the previous section the behavior of isoconversional methods was introduced for the 

cases of independent and consequent/following complex kinetic processes based on the JMA 

kinetics. In order to generalize the findings, the flexible AC model was used to simulate 

processes with different asymmetries (the JMA kinetics exhibits only very narrow range of 

kinetic peak asymmetries) and to confirm the universality of the rules for interpretation of the 

isoconversional E-α dependences (with respect to determination of the true E values of the 

involved sub-processes). The analysis of the AC data starts with the dataset with M = 1 and 

N = 2, which exhibits an opposite asymmetry in comparison with the JMA model (the same 

magnitude but positive sloping) – see Figs. 5 and 6 (the corresponding overlaps of the kinetic 

data-curves are included in the Supplemental online material; the kinetic parameters were 

chosen so that approximately similar degrees of overlaps were achieved for the respective q
+
 

ranges). As can be seen, very similar conclusions can be derived also for the complex 

processes with opposite asymmetry to that introduced in the Results section. The integral E-α 

dependences are again always within the E limits and the lower E limit can be determined 

from the lowest achieved integral E-α value. The differential E-α dependences again exhibit 

the characteristic over- and undershoots, where the upper E limit can be determined from the 

E value at the point of inflexion following the overshoot effect. In certain cases (full overlaps, 

most often when the sub-process with lower E is dominant – see e.g. the graph with 8 –

 16 °C·min
-1

 in Fig. 5) the descending part of the differential E-α dependence is monotonic 

and does not exhibit point of inflexion (or this point is below the integral E-α dependence). In 

such case the width of the high-E plateau shown by the integral E-α data indicates how far 

http://cbs.wondershare.com/go.php?pid=5261&m=db
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above this plateau the upper E limit lies (the wider the plateau, the closer the upper E limit). 

Generally, again except for the full overlaps without the possibility to measure kinetic data at 

higher or lower q
+
 the universal advice would be to limit the average degree of overlap by 

excluding the data-curves with largest overlays. 

In addition to the high positive AC asymmetry (0.35 according to the Fraser-Suzuki 

classification [28-30] for the combination of M = 1 and N = 2), similar testing was done also 

for the AC processes with intermediate kinetic asymmetries and for the AC process with high 

negative asymmetry (similar to that of JMA kinetics) – see Table 1 for the values of AC 

kinetic exponents and corresponding Fraser-Suzuki asymmetries. Resulting E-α dependences 

for selected q
+
 ranges (3 – 6, 3 – 11, 13 – 100 and 25 – 100 °C·min

-1
) are depicted in Figs. 7 

and 8; the raw data-curves are included in the Supplemental online material. The base 

findings reported above for the JMA kinetics (inherent high negative asymmetry) and AC 

kinetics with high positive asymmetry are apparently valid also for the intermediate 

asymmetries and thus can be confirmed for the whole <-0.35; 0.35> interval of peak 

asymmetries (scaling according [28-30]). In addition, based on monitoring the development 

of the differential E-α dependence course, it can be seen that for sub-processes with negative 

asymmetries the differential E-α data are easy to interpret in case of low-α overlaps, whereas 

for sub-processes with positive asymmetries it is the high-α overlaps that result in easily 

interpretable differential E-α dependences (exhibiting the point of inflexion after the 

overshoot). In the opposite cases (high-α overlaps for negative asymmetries and low-α 

overlaps for positive asymmetries) the interpretation of the combined differential and integral 

isoconversional dependences can be tricky due to the lack of the point of inflexion on the 

differential E-α data. Also note, that the four AC datasets presented in Figs. 7 and 8 were 

simulated for I1/I2 = 50/50 – the increased dominance of the low-E sub-process would lead to 

increased difficulty in the estimation of the true high-E limit (denoted E2 in the present paper). 
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4.1. Alternative evaluation and data-processing methods 

It has been shown that in case of the strongly overlapping independent or consequent 

kinetic processes, where the sub-process with lower E is dominant, it can be difficult to 

determine the activation energy of the sub-process with higher E based on the interpretation 

of the isoconversional E-α dependences. Occurrence of this issue depends on the asymmetry 

of the overlapping kinetic peaks – difficulties arise for high-α overlaps at negative 

asymmetries and for low-α overlaps at positive asymmetries. In these cases, the alternative 

evaluation or data-processing methods need to be used to precisely determine the activation 

energy for the sub-process with higher E. 

Starting with the data evaluation, it has been shown in [32] that the Tp-based methods 

(where Tp stands for the temperature at which the reaction proceeds at maximum rate [31]), 

such as the original Kissinger method [33] (see Eq. 13), can very accurately estimate the true 

activation energies of the complex overlapping sub-processes.  

(13) 

Since the issue with isoconversional methods occurs at high-degree or full overlaps, the Tp-

based methods can in those cases utilize extrapolation of the shoulders manifesting alternately 

on both sides of the “main” kinetic peak due to the increased q
+
 to determine the lower E 

limit. For determination of the higher E limit the Tp-based methods can simply utilize the fact 

that the small changes of the thermo-kinetic background [34 - 36] (overlap with low-E sub-

process counts too) do not influence the output of these methods and hence the method can be 

used in a straight-forward way on the sharper (high-E) kinetic peaks. Another, 

computationally a lot more challenging way how to determine the true activation energies of 

the involved sub-processes, is the deconvolution of the complex kinetics. The separation of 

the kinetic sub-peaks can be done either by mathematic deconvolution (see e.g. [37 - 39]) or 
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by kinetic deconvolution (see e.g. [40 - 42]) – more on the topic of advantages and 

disadvantages of these methods can be found in [43, 44]. 

With regard to the data-processing tricks and tips, it has been already mentioned above 

that arbitrary omitting of data-curves obtained at certain heating rates that in consequence 

leads to reduction of the average degree of sub-processes overlap can largely improve the 

interpretation possibilities for the isoconversional methods. This holds even if the reduced 

number of evaluated data-curves decreases to 3. When performing the thermo-analytical 

measurements intended for complex process kinetic calculations, it is therefore recommended 

to make an initial screening at highest and lowest possible q
+
, perform measurements at a 

variety of heating rates [45] but particularly focus on those exhibiting low degrees of overlaps 

(even if the change of heating rate should be very small).  

Moreover, a multi-step experimental procedure can be applied when a dominant 

process with low activation energy overlaps with another process that exhibits higher E. First, 

isothermal annealing applied below the onset of the complex process will either eliminate or 

at least reduce the magnitude of the initially dominant process with lower E (due to the lower 

activation energy the process will proceed at significantly higher rate when extrapolated to 

lower temperature). Then the material can be cooled and heated at a standard way at constant 

q
+
. Due to the potentially increased reproducibility issues influencing the isoconversional 

evaluation, it would be recommended to perform the first step for a whole batch of material so 

that the consequent linear heating scans could be produced for a material with uniform 

properties (samples taken out from the annealing-processed batch). It is also essential to check 

that the asymmetry or activation energy of the high-E sub-process does not change with 

duration of the annealing step, because this would indicate other than independent or 

consequent relationship between the involved reactions. 
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5. Conclusions 

Combined utilization of differential and integral isoconversional methods was studied 

in the environment of theoretically simulated independent and following complex kinetic 

processes with the following conclusions: 

 all integral methods provide for practical reasons similar E-α dependences, where the 

differences in E values are below ~ 3 %, i.e. well below the experimentally achieved errors 

arising from the data reproducibility. The same conclusion is valid also for the differential 

isoconversional methods (including the pseudo-differential ones).   

 integral isoconversional methods always provide E values in-between the true values of 

activation energies corresponding to the involved sub-processes (low-E and high-E limits). 

The integral E-α dependences also always (for any asymmetry and any degree of overlap) 

well indicate the value of the low-E limit, i.e. the activation energy for the sub-process 

with lower E. 

 in most cases the differential E-α dependences exhibit characteristic over- and undershoots. 

The high-E limit (the activation energy for the sub-process with higher E) can be 

determined from the E value at the point of inflexion following the overshoot effect on the 

differential E-α dependence. 

 in case of fully overlapping sub-processes where the sub-process with lower E is dominant, 

the descending part of the differential E-α dependence is monotonic and does not exhibit 

point of inflexion (or this point is below the integral E-α dependence). This behavior is 

more pronounced in case of high-α overlaps for negative asymmetries and low-α overlaps 

for positive asymmetries. In such cases the height and width of the plateau shown by the 

integral E-α data can provide a rough estimation for the high-E limit. It is however strongly 

recommended to confirm this value by using an alternative method – see section 4.1.  
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All above-mentioned conclusions are valid for the overlapping kinetic processes with the 

asymmetries in the range <-0.35; 0.35> (scaled in terms of Fraser-Suzuki function). Extensive 

testing of these findings for real-life experimental complex kinetic data is in progress. 
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Table 1 

Kinetic parameters used to simulate the AC datasets and the corresponding Fraser-Suzuki [28-

30] asymmetry parameter a3. 

 

E1 A1 M1 N1 I1 E2 A2 M2 N2 I2 a3 

kJ·mol
-1 

s
-1

 - - - kJ·mol
-1 

s
-1

 - - - - 

50 10
2.7

 0.44 0.88 0.3 300 10
27

 0.44 0.88 0.7 -0.35 

50 10
2.7

 0.44 0.88 0.7 300 10
27

 0.44 0.88 0.3 -0.35 

50 10
2.7

 0.54 1.08 0.3 300 10
27

 0.54 1.08 0.7 -0.18 

50 10
2.7

 0.54 1.08 0.7 300 10
27

 0.54 1.08 0.3 -0.18 

50 10
2.7

 0.66 1.32 0.3 300 10
27

 0.66 1.32 0.7 0 

50 10
2.7

 0.66 1.32 0.7 300 10
27

 0.66 1.32 0.3 0 

50 10
2.9

 0.81 1.62 0.3 300 10
27

 0.81 1.62 0.7 0.18 

50 10
2.9

 0.81 1.62 0.7 300 10
27

 0.81 1.62 0.3 0.18 

80 10
6.3

 1.00 2.00 0.3 300 10
27

 1.00 2.00 0.7 0.35 

80 10
6.3

 1.00 2.00 0.7 300 10
27

 1.00 2.00 0.3 0.35 

 

 

Table 2 

Kinetic data-curves included in the particular evaluated datasets. 

 

included heating rates q
+
 (in °C.min

-1
) 

0.5, 1, 2, 3 

3, 4, 5, 6 

8, 11, 13, 16 

25, 50, 75, 100 

150, 200, 300, 400 

0.5, 1, 2, 3, 4, 5, 6, 8, 11, 13, 16, 25, 50, 75, 100, 150, 200, 300, 400 

3, 4, 5, 6, 8, 11 

13, 16, 25, 50, 75, 100 

 

 

 

 

 

Figure captions 

 

Fig. 1: Left column: JMA complex data-curves simulated for kinetic parameters listed in the 

text. Range of included q
+
 (see Table 2 for complete lists) and I1/I2 terms are denoted 

in each respective graph.  

Right column: Corresponding (to the left-hand side graphs) E-α dependences provided 

by the differential and integral isoconversional methods. Vertical dashed line indicates 

I1/I2; horizontal dashed lines indicate E1 and E2. 

Included q
+
 ranges are 0.5 – 3 °C.min

-1
 and 150 – 400 °C.min

-1
.  

 

Fig. 2: Left column: JMA complex data-curves simulated for kinetic parameters listed in the 

text. Range of included q
+
 (see Table 2 for complete lists) and I1/I2 terms are denoted 

in each respective graph.  
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Right column: Corresponding (to the left-hand side graphs) E-α dependences provided 

by the differential and integral isoconversional methods. Vertical dashed line indicates 

I1/I2; horizontal dashed lines indicate E1 and E2. 

Included q
+
 ranges are 3 – 6 °C.min

-1
 and 3 – 11 °C.min

-1
. 

 

Fig. 3: Left column: JMA complex data-curves simulated for kinetic parameters listed in the 

text. Range of included q
+
 (see Table 2 for complete lists) and I1/I2 terms are denoted 

in each respective graph.  

Right column: Corresponding (to the left-hand side graphs) E-α dependences provided 

by the differential and integral isoconversional methods. Vertical dashed line indicates 

I1/I2; horizontal dashed lines indicate E1 and E2.  

Included q
+
 ranges are 25 – 100 °C.min

-1
 and 13 – 100 °C.min

-1
. 

 

Fig. 4: Left column: JMA complex data-curves simulated for kinetic parameters listed in the 

text. Range of included q
+
 (see Table 2 for complete lists) and I1/I2 terms are denoted 

in each respective graph.  

Right column: Corresponding (to the left-hand side graphs) E-α dependences provided 

by the differential and integral isoconversional methods. Vertical dashed line indicates 

I1/I2; horizontal dashed lines indicate E1 and E2.  

Included q
+
 ranges are 8 – 16 °C.min

-1
 and 25 – 400 °C.min

-1
. 

 

Fig. 5: E-α dependences provided by the differential and integral isoconversional methods for 

the AC datasets simulated with M = 1 and N = 2. Range of included q
+
 (see Table 2 

for complete lists) is denoted in each respective graph.  Vertical dashed line indicates 

I1/I2; horizontal dashed lines indicate E1 and E2. Included q
+
 ranges are 0.5 – 3 °C.min

-

1
, 3 – 6 °C.min

-1
, 8 – 16 °C.min

-1
 and 25 – 100 °C.min

-1
. 

 

Fig. 6: E-α dependences provided by the differential and integral isoconversional methods for 

the AC datasets simulated with M = 1 and N = 2. Range of included q
+
 (see Table 2 

for complete lists) is denoted in each respective graph.  Vertical dashed line indicates 

I1/I2; horizontal dashed lines indicate E1 and E2. Included q
+
 ranges are 150 – 

400 °C.min
-1

, 0.5 – 400 °C.min
-1

, 3 – 11 °C.min
-1

 and 13 – 100 °C.min
-1

. 

 

Fig. 7: Selected E-α dependences provided by the differential and integral isoconversional 

methods for the AC datasets simulated with M and N parameters indicated in the 

graphs (the combinations of M = 0.44 + N = 0.88; M = 0.54 + N = 1.08; M = 0.66 + 

N = 1.32; M = 0.81 + N = 1.62). Range of included q
+
 (see Table 2 for complete lists) 

is denoted in each respective graph.  Vertical dashed line indicates I1/I2; horizontal 

dashed lines indicate E1 and E2. Included q
+
 ranges are 3 – 6 °C.min

-1
 and 3 – 

11 °C.min
-1

. 

 

Fig. 8: Selected E-α dependences provided by the differential and integral isoconversional 

methods for the AC datasets simulated with M and N parameters indicated in the 

graphs (the combinations of M = 0.44 + N = 0.88; M = 0.54 + N = 1.08; M = 0.66 + 

N = 1.32; M = 0.81 + N = 1.62). Range of included q
+
 (see Table 2 for complete lists) 

is denoted in each respective graph.  Vertical dashed line indicates I1/I2; horizontal 

dashed lines indicate E1 and E2. Included q
+
 ranges are 13 – 100 °C.min

-1
 and 25 – 

100 °C.min
-1

. 
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