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Abstract 

Theoretically simulated kinetic data were used to evaluate the errors associated with 

the common issue of evaluating the in-situ non-isothermal X-ray diffraction data, where the 

complex multistep temperature program (alternating the non-isothermal heating steps with 

isothermal steps during which the diffraction patterns are collected) is for the purposes of 

evaluation replaced by a simple non-isothermal heating performed at the reduced/effective 

heating rate. The kinetic analysis has shown that, in general, best results are provided by the 

non-linear optimization methods simultaneously evaluating the data-curves obtained for all 

the different heating rates. For the nucleation-growth (KMJMA) kinetics the distortive 

influence of the temperature program parameters increases as follows: heating rate during 

non-isothermal segments < duration of the isothermal segment < temperature interval between 

the isothermal segments. The non-optimization methods of kinetic analysis (integral 

isoconversional methods for evaluation of activation energy E and master plots for 

determining the appropriate kinetic model) were found to perform inaccurately, with large 

degree of randomness based on the selection of starting temperature, and are not 

recommended for evaluation of the in-situ XRD data – the only exception seem to be the 

differential isoconversional methods that provided accurate E values. Generalization of the 

present conclusions for all KMJMA processes is suggested and discussed.   
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1. Introduction 

The (powder) X-ray diffraction analysis (P)XRD is a standard analytical tool utilized 

in both academic and industrial spheres to investigate the crystalline structure of solid-state 

materials. The in-situ (temperature-resolved) XRD analysis brings numerous advantages to 

the table, such as commercially accessible measurements in, the -260 to 2400 °C temperature 

range, simultaneous possibility to regulate pressure and humidity, or direct XRD studies of 

reactions and phase transformations.1-5 Currently, three main solutions to the sample 

heating/cooling are commercially available – heated furnaces, direct (strip) heaters and gas 

flow heaters. Heated furnaces provide good temperature homogeneity (associated with 

accurate temperature determination), the sample can be easily changed and the sample holder 

can be selected to avoid interaction with the sample; however this type of temperature 

regulation is not very precise at low temperatures and enables only rather slow 

heating/cooling rates. On the other hand, direct heaters offer high heating and cooling rates, as 

well as the widest range of achievable absolute temperatures. Their disadvantages are the 

worse temperature uniformity (associated with thermal gradients both within and outside of 

the sample) and the possible interaction between the sample and the heater/holder (in case of 

the strip heaters). The gas flow heaters, where the sample is placed in a capillary, provide 

several advantages associated with the sample positioning (possibility to rotate, transmission 

mode, accurately reproducible sample position) but the thermal side of this solution is 

significantly worse (unavoidable temperature gradients, inaccurate determination of 

temperature) compared to the other two options.1,4,5 Nonetheless, combined, these three 

solutions represent a very wide field of possibilities for temperature regulation. 

The technological advance of the in-situ temperature stages is, however, not yet paired 

with a similar progress regarding the detection of XRD diffraction signal. Therefore, the 

collection of a standard diffraction pattern still requires significant amount of time (not 
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considering the readily unavailable sources of extremely intense XRD radiation, such as 

synchrotrons). This disproportion between the possibility of very fast heating/cooling and 

inevitably rather slow pattern collection may potentially result in a major issue in case of non-

isothermally determined reaction kinetics, the basis for which is an experiment consisting of 

alternating short isothermal and non-isothermal steps. The non-isothermal steps define the 

rate at which the temperature changes in-between the isothermal periods during which the 

XRD patterns are collected. Nowadays, the in-situ XRD kinetic studies of amorphous-to-

crystalline or polymorphic transitions belong to the standard approaches of thermo-kinetic 

research – see e.g. [6 - 15] In most studies the degree of crystallinity/conversion α obtained 

from in-situ XRD (usually expressed via evolution of the normalized integrated area under the 

selected characteristic diffraction peak or part of the pattern) is plotted in dependence on 

temperature and evaluated by the standard methods of kinetic analysis16, 17 derived for the 

assumption of simple linear heating program. Even if the true effective heating rate is 

correctly calculated for the stepwise temperature program, this approach obviously neglects 

the possible deviations of kinetics due to the isothermal periods.   

In the present paper theoretical simulations paired with the consequent kinetic analysis 

will be used to explore the magnitude of errors associated with the utilization standard 

methods of kinetic analysis (which assume simple linear heating program) in case of the non-

isothermal in-situ XRD measurements employing the multi-step temperature program. 

 

2. Kinetic simulations 

The data simulations used in the present article were based on the standard derivative 

kinetic equation18, 19:   

(1)   feAIdtd RTE  
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where α is the degree of conversion, t is time, T is temperature, I is the integrated area under 

the kinetic peak, A is the pre-exponential factor and E is the apparent activation energy of the 

process. The f(α) function is a representation of a kinetic model; in the present article the most 

common and most often occurring crystallization kinetics – the nucleation growth 

Kolmogorov-Mirkin-Johnson-Mehl-Avrami (KMJMA) equation20-25 - was utilized in the 

simulations:  

(2) 

where m is the model kinetic exponent corresponding to the dimensionality of the process. In 

order to simulate the in-situ XRD measurement the stepwise temperature program was 

adopted (see the blue line in Fig. 1). Such temperature program has three variables, the 

temperature step ΔT in-between the two isothermal segments, duration Δt of each isothermal 

segment (time needed for collection of the XRD pattern of sufficient quality), and the heating 

rate q+ applied during the non-isothermal segments. Based on these variables, the effective 

heating rate can be calculated: 

(3) 

For illustration, the evolution of q+
eff with the corresponding variables (ΔT, Δt, q+) is shown in 

Fig. 2. Note that graphical determination of q+
eff is basically a linear fit through the blue 

stepwise line from Fig. 1. 

 For the purpose of the present study all the simulations utilized the following set of the 

kinetic parameters: E = 150 kJ·mol-1, KMJMA kinetics, m = 3, I = 1, A = 1015 s-1, 

T0 = 124 °C. In Fig. 1 the example of the derivative kinetic signal simulated for the stepwise 

temperature program with the “ΔT = 2 °C, Δt = 2 min, q+ = 2 °C·min-1” characteristic (red 

line) is compared with the signal simulated for a simple non-isothermal linear heating at the 

rate corresponding to the given characteristic q+
eff = 0.66667 °C·min-1 (black dashed line; q+

eff 

calculated according Eq. 3). In addition, the inset shows the integral kinetic signal as would 

be obtained during the in-situ XRD experiment with this temperature profile. Each point in 
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the inset thus corresponds to the degree of conversion α being calculated for the final stage of 

the corresponding isothermal segment. In order to map the situation for the most typical range 

of experimental conditions, datasets similar to that depicted in Fig. 2 were created for all 

combinations of the following options: ΔT = 1, 2, 3 and 5 °C; Δt = 0.5, 1, 2, 3, 5 and 10 min; 

q+ = 0.5, 1, 2, 5 and 10 °C·min-1 (120 datasets in total). Utilization of the sets of different 

heating rates q+ then gives opportunity to perform the standard kinetic analysis16 for the given 

combination of the remaining variables (ΔT, Δt). The source datasets for these calculations 

are for the borderline conditions (ΔT = 1 and 5 °C; Δt = 0.5 and 10 min) depicted in Figs. 3 

and 4. The derivative data in Fig. 3 represent the complete signal record such as would be in 

case of the multi-step temperature program obtained by e.g. differential scanning calorimetry 

(DSC), differential thermal analysis (DTA) or differential thermogravimetry (DTG). The 

simulated data-point density is constant with respect to the time axis, i.e. the isothermal steps 

contain multiple points. As can be seen, larger temperature steps ΔT give rise to more 

significant distortions compared to the longer pattern collection periods Δt. Similar 

conclusion can be derived also from the integral data depicted (for the same example 

borderline datasets) in Fig. 4. Note that the integral data were calculated in the way the real 

in-situ XRD patterns would have been potentially collected (with respect to the largest 

possible distortion), i.e. the respective degrees of conversion α were calculated for the final 

stage (last data-points) of the corresponding isothermal segment. 

 

3. Results 

 The kinetic data series simulated for the different ΔT + Δt combinations (each data 

series containing 5 datasets simulated for different q+) were evaluated by means of the 

nowadays state-of-art approach – the non-linear optimization based on the multivariate kinetic 

analysis MKA26:  
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(4) 

(5) 

 

where RSS is the sum of squared residua, n is number of simulated curves, j is index of the 

given simulated curve, Firstj is the index of the first point of the given curve, Lastj is the 

index of the last point of the given curve, Yexpj,k is the experimental value of the point k of 

curve j, Ycalj,k is the calculated value of the point k of curve j and wj is weighting factor for 

curve j. The weighting factors are especially important in case of the derivative kinetic data, 

where the heat/mass flow is directly proportionate to the applied heating rate and the kinetic 

dα/dt data (and errors) are thus multiplied by q+ when treated with respect to the temperature 

axis. All the fits were performed under the tested simplifying assumption of the data being 

collected during a simple non-isothermal heating scan with heating rate equal to q+
eff. 

 Starting with the derivative kinetic data series, the results of MKA are depicted in 

Fig. 5 – note that both weighting factors alternatives (w = 1 and w defined by Eq. 5) were 

explored. Overall, the MKA fits were very good, in most cases identical to the simulation 

based on the simple (single-step) heating scan at q+
eff (the dashed curve in Fig. 1). This is 

mainly due to the derivative data being simulated in full time resolution, when the non-linear 

optimization accounts for the data-points within the isothermal segments due to MKA being 

based on the differential form of the standard kinetic equation (Eq. 1). Interestingly, this 

indicates that the effective heating rate is far more important for the averaged kinetic signal 

manifestation (the derivative DSC or DTG data in this case) than the actual distribution of the 

data-points within the multi-step temperature program. In other words, from the kinetic point 

of view the multi-step data are evenly distributed along the averaged curve corresponding to 

q+
eff. Regarding the particular results, in most cases the monitored kinetic characteristics (E, 

A, I and mKMJMA) were distorted only negligibly by the simplifying replacement of the multi-
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step temperature program by a single heating step. Only in case of the most severely 

staggered measurements (ΔT = 5 °C, Δt = 10 min) significant distortions arose: ΔE = 15 – 

20 kJ·mol-1, Δlog(A/s-1) = 2 – 2.5, and Δm = 0.5 – 0.6. On the other hand, even in these cases 

the errors associated with the integrated area under the optimized kinetic signal 

(corresponding to e.g. the process enthalpy or mass loss) were only ~ 3 %.  

 Kinetic evaluation of the data simulated as a resemblance of the in-situ XRD 

measurements (where only last point of each isothermal segment and no points from the non-

isothermal segments were taken into account) resulted, as expected, in larger errors of the 

kinetic parameters – see Fig. 6. Contrary to the first group of datasets (Fig. 5), here each 

widening of the gap in-between the data-points (either via increased ΔT or Δt) resulted in 

gradually increasing deviations of the resulting kinetic parameters. In the absolute value the 

errors do not largely exceed those observed for the most severe case of the derivative datasets 

– up to ΔE = 30 kJ·mol-1, Δlog(A/s-1) = 3.5, and Δm = 0.5.  However, significant deviations 

occur already for the (ΔT = 2 °C, Δt = 3 min), (ΔT = 3 °C, Δt = 1 min) and (ΔT = 5 °C, Δt = 

0.5 min) combinations, which all could be considered acceptable from the experimental point 

of view. Also, well recognizable trends in the deviations can be identified based on Fig. 6. 

Evaluation of the kinetic parameters from the in-situ XRD data will in case of the KMJMA 

kinetics always result in overestimated values of E and A, and underestimated values of n. 

The materials characteristic I is in case of the integral data basically defined by the 

extrapolated baselines (0 and 100 %) and thus no errors/distortions of this parameter arise 

from the changed kinetics itself. 

 

4. Discussion 

 In the present section we will discuss the sources of errors arising from the in-situ 

XRD measurements (the analysis will be performed on the integral simulated data introduced 
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in Figs. 4 and 6), as well as the possible utilization of different methods of kinetic analysis in 

case of the in-situ XRD data. 

 

4.1. Error analysis for the integral (in-situ XRD) data 

Apart from the general influence of ΔT and Δt (that was discussed in Section 3), the 

results of the MKA optimization can be also distorted based on the inconsistence of the 

deviations associated with different q+ - one should bear in mind that MKA is based on a 

simultaneous optimization of all input data-curves. In order to study the sources of errors and 

deviations arising from the single-step MKA kinetic evaluations applied to the multi-step 

temperature programs (resembling the non-isothermal in-situ XRD measurements), the 

analysis was performed on the integral dataset exhibiting the largest deviations, i.e. the (ΔT = 

5 °C, Δt = 10 min) depicted in Fig. 4D. The concept of only several simulated curves 

(obtained for different q+) being always analyzed during the MKA optimization was 

employed. The particular sets of the simulated curves are listed in Table 1 – e.g. in the set A 

only the data-curves obtained for q+ = 1, 2, 5 and 10 °C·min-1 were evaluated via 

MKA. Looking at the data in Fig. 4D, it is clear that even under these rather extreme 

measurement conditions it is only the data obtained at highest underlying heating rate 

q+ = 10 °C·min-1 that are apparently largely distorted and shifted to lower temperature (thus 

almost overlapping with the data simulated for q+ = 5 °C·min-1). This is indeed reflected in 

Fig. 7A, where omitting this curve (see set D) resulted in a reduced error of the MKA 

evaluation compared to the standard evaluation of all five q+ curves represented by the dashed 

line – note that the true values used in the simulations were E = 150 kJ·mol-1 and m = 3. On 

the other hand, in case when only the data-curves for q+ = 5 and 10 °C·min-1 were evaluated 

(see set C), completely erroneous results were obtained. The evaluation of E appears to be 

more influenced by the presence of the largely distorted data – all three sets (D, E, F) with the 
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omitted q+ = 10 °C·min-1 data-curve show slight improvement over the standard 5-curve 

evaluation. The evaluation of mKMJMA, on the other hand, worsens with more curves being 

omitted from the optimization and only the set D (where the most distorted curve was 

omitted) showed improvement over the standard 5-curve evaluation. However, considering 

the absolute values of deviations depicted in Fig. 7A, the distortions arising from the changed 

shift of the kinetic data with increasing q+ has significantly lower effect on the overall error 

(expressed by the dashed lines) than the base distortion arising from ΔT and Δt. 

 

4.2 Alternative kinetic methods for evaluation of derivative data 

Apart from the non-linear optimization methods (such as the MKA), number of other 

methodologies exist for enumeration of Eq. 1.16 The apparent activation energy is in this 

respect usually determined via isoconversional methods – it was recently shown that for 

practical purposes all the respective derivative and integral methods perform similarly in case 

of complex process scenarios.27 Thus for the purpose of the present study the evaluation using 

one differential (Friedman28, Eq. 6) and one integral (Kissinger-Akahira-Sunose = KAS29, 

Eq. 7) method was applied: 

(6) 

 

(7) 

where (dα/dt)α , Tα and Eα are the conversion rate, temperature and activation energy 

corresponding to arbitrarily chosen values of conversion α. The evaluations were applied to 

the selected borderline derivative datasets with the following characteristics: (ΔT = 1 °C, Δt = 

0.5 min), (ΔT = 1 °C, Δt = 10 min), (ΔT = 5 °C, Δt = 0.5 min) and (ΔT = 5 °C, Δt = 10 min). 

In addition, one “intermediate” dataset with (ΔT = 2 °C, Δt = 2 min) was also evaluated. The 

differential Friedman method provided in all cases very precise estimates of the true 
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activation energy Eα = 150.00 ± 0.05 kJ·mol-1 across the whole explored α range (0.1 – 0.9), 

which is a consequence of the standard kinetic equation (Eq. 1) being applied in its 

differential form. On the other hand, the integral KAS method exhibited considerable errors 

associated with the data complexity – the corresponding E-α dependences are depicted in 

Fig. 7B. Whereas the datasets with small Δt provided still relatively acceptable estimates, Δt = 

10 min resulted in large uncertainties. In case when the isothermal step was implemented 

numerous times throughout the kinetic transformation (ΔT = 1 °C, Δt = 10 min), the estimated 

E values are completely incorrect. In case of the isothermal step having been manifested only 

several times during the relevant time period, the estimates are still relatively accurate but 

their precision greatly decreased – note the large error bars at (ΔT = 5 °C, Δt = 10 min).  

 The non-fitting model-based analysis also often utilizes the master plots30,31 based on a 

simple transformation of the experimental data. For non-isothermal measurements one can 

write: 

(8) 

(9) 

Based on the positions of the maxima of these master plot functions the appropriate kinetic 

model can be determined. The y(α) function can be further utilized for estimating the 

parameters of the model; the calculation for the KMJMA kinetics is as follows: 

(10) 

 

where αmax,y is the position of the y(α) function maximum (when plotted in dependence on α). 

The αmax,z values are for the present data depicted in Fig. 7C. No significant trend in quality 

can be recognized with respect to the tested (ΔT, Δt, q+) combinations due to the randomness 

of the deviation of the single data-point (maximum) position – note that the randomness 

increases with both, ΔT and Δt. Since only approximately one third of the obtained αmax,z 

values lies within the tolerance of the KMJMA model correspondence (αmax,z = 0.63 ± 0.03), 
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the master plots evidently suffer from too high errors for the method to be applicable to the 

presently investigated multistep measurements. Similar conclusion can be derived also based 

on the mKMJMA values calculated according Eq. 10 and depicted in Fig. 7D. Also here the 

qualitative outcome of the tested (ΔT, Δt, q+) combinations is completely random and the 

obtained KMJMA kinetic exponents are far from being utilizable for deriving the information 

about the dimensionality of the growing crystallites from the derivative multi-step data. Note 

however, that the 3D crystal growth (indicated by mKMJMA = 3, as used in the present 

simulations) is most susceptible to producing large errors during the evaluation according 

Eq. 10; these errors may have been smaller if e.g. mKMJMA = 1 was used in the simulations. 

 Note that the errors provided by the integral KAS method are the consequence of 

Eq. 7 being derived via integration of Eq. 1 under the assumption of the linear heating, which 

was true for all the older standard integral isoconversional methods (such as e.g. KAS, 

OFW32, Starink33 etc.) – note that all these methods use simple approximations to solve the 

integral form of Eq. 1, assuming in their derivation E to be constant with α, and resulting in 

solutions based on linear optimization such as Eq. 7 (similarly flawed would be the utilization 

of the popular Kissinger equation34). The modern flexible integration methods (such as e.g. 

[35] or [36]) avoid this issue. The most advanced flexible integration methods (such as e.g. 

[36]) utilize non-linear optimization paired with integration over small segments of either 

time or temperature (E is assumed to be constant only in a small α interval, which is by the 

way the point of the differential Friedman method), which allows application of this 

methodology to any temperature program (including e.g. cooling or various complex step-

wise procedures) with the result of accurately determined E-α and A-α dependences. For 

further detailed information the reader is advised to read section 3.3 in [16]. The fact that 

ignoring the underlying assumptions about the linear q+ leads to significantly inaccurate 

kinetic parameters was also demonstrated e.g. in [37-39].   
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4. Conclusions 

 The errors associated with the kinetic analysis being applied to the derivative and 

integral multistep data were analyzed for the case of replacing the complex temperature 

program with a single-step heating at q+
eff. The analysis has shown that MKA is very well 

suited for such analyses. In case of the derivative full-scale data the simplification resulted in 

only negligible errors in all cases (apart from one, rather extreme and unrealistic program with 

large ΔT and Δt). In case of the integral data, which are directly proportionate to the real in-

situ XRD data, it was found that low ΔT is the most critical parameter for accurate results – 

with ΔT = 1 °C the errors for all kinetic parameters were small/acceptable even at long pattern 

collection times (up to Δt = 10 min). Larger temperature steps already produced significant 

distortions of the data and, correspondingly, non-negligible errors in the MKA evaluation. It 

was also shown that the MKA analysis of the in-situ XRD data does not overly suffer from 

the increasing data distortions occurring with rising q+ - the errors were significantly smaller 

compared to those produced by ΔT and Δt. Since the shortening of the integration time Δt is 

limited by the minimum necessary quality of the XRD pattern, ΔT remains to be the most 

crucial parameter for consideration. In addition, several alternative methods of kinetic 

analysis were tested for the derivative multi-step data. The isoconversional differential 

Friedman method provided excellent, undistorted results. On the other hand, the 

isoconversional integral KAS method as well as the application of the master plots performed 

rather poorly, providing inaccurate and random-based results (the randomness originates from 

the arbitrary selection of the isothermal segments temperatures). 

 With regard to the generalization of the results, the present conclusions are applicable 

for all processes following the KMJMA kinetics, where the isothermal and non-isothermal 

crystallization kinetics are similar (failure to meet this requirement may produce additional 



13 

errors [40, 41] and favor decreasing of Δt with regard to their minimization). The 

generalization scaling can be based on adjusting ΔT with respect to the number of steps 

occurring throughout the manifestation of the crystallization process (overall position of the 

data on the temperature axis is irrelevant) – i.e. the processes taking e.g. double the 

temperature range (at given q+) to fully evolve need all ΔT to be twice as high for the results 

and conclusions to be transferable. On the other hand, the present paper does not consider 

crystallization kinetics with different asymmetries (other than KMJMA) or complex 

crystallization process – these topics will be addressed in a concurrent paper.  
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Table 1 

Sets of data-curves (simulated at different q+) optimized via MKA during the error analysis 

performed for the (ΔT = 5 °C, Δt = 10 min) dataset. 

 

set utilized q+ 

A 1, 2, 5, 10 

B 2, 5, 10 

C 5, 10 

D 0.5, 1, 2, 5 

E 0.5, 1, 2 

F 0.5, 1 

G 0.5, 10 
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Figure captions 

 

Fig. 1: Example dataset simulated for the kinetic parameters: E = 150 kJ·mol-1, KMJMA 

kinetics, m = 3, I = 1, A = 1015 s-1, ΔT = 2 °C, Δt = 2 min, q+ = 2 °C·min-1. Step-like 

(blue color; left and bottom axes) line depicts the applied temperature program, solid 

(red color; right and top axes) line shows the corresponding derivative kinetic 

response, dashed (black color; right and top axes) line shows the signal simulated for 

the simple heating scan and the same kinetic parameters. Inset shows the 

corresponding integral kinetic signal, α was evaluated in agreement with the concept 

of in-situ XRD, i.e. last values obtained during each isothermal segment were taken.   

 

Fig. 2: Effective heating rates calculated for different combinations of ΔT, Δt and q+. Graph 

A has q+ = 0.5 °C·min-1; graph B has q+ = 10 °C·min-1; graph C has ΔT = 0.5 °C; 

graph D has ΔT = 10 °C; graph E has Δt = 0.5 min; graph F has Δt = 10 min. 

 

Fig. 3: Example (borderline) derivative kinetic datasets simulated for the listed ΔT, Δt and q+ 

conditions and kinetic parameters: E = 150 kJ·mol-1, KMJMA kinetics, m = 3, I = 1, 

A = 1015 s-1. 

 

Fig. 4: Example (borderline) integral kinetic datasets simulated for the listed ΔT, Δt and q+ 

conditions and kinetic parameters: E = 150 kJ·mol-1, KMJMA kinetics, m = 3, I = 1, 

A = 1015 s-1. Values of α were evaluated in agreement with the concept of in-situ XRD. 

Lines are only a guidance for eyes. 

 

Fig. 5: Kinetic parameters evaluated by MKA from the derivative kinetic datasets 

corresponding to all tested (ΔT, Δt) combinations. Each evaluation was performed 

either with the weighting factor w = 1 or with w defined by Eq. 5.  

 

Fig. 6: Kinetic parameters evaluated by MKA from the integral kinetic datasets 

corresponding to all tested (ΔT, Δt) combinations.  

 

Fig. 7: A) E (black data) and m (red data) values obtained by MKA for the (ΔT = 5 °C, Δt = 

10 min) integral kinetic dataset while omitting various different data-curves – see 

Table 1 for the definitions of sets A-G. Dashed lines indicate the values obtained for 

the full dataset (containing all data-curves for all five q+).  

 B) Results of KAS method applied to the selected derivative kinetic datasets – 

indicated in the legend. 

 C) Values of αmax,z obtained from the master plot analysis for the selected derivative 

kinetic datasets – indicated in the legend. 

 D) Values of mKMJMA obtained from the master plot analysis for the selected derivative 

kinetic datasets – indicated in the legend. 
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Fig 1 
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Fig 2 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



19 

Fig 3 
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Fig 4 
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Fig 6 
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Fig 7 

 
 

 

 

 

 

 

 

 

 


