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Abstract 

 

Transport is an important element of sustainability but, on the other hand, it causes congestion, accidents, smell, noise, 

air pollution, health effects etc. This article will focus on the environmental pillar of sustainable transport, specifically 

on transport emissions. The aim of this paper is to analyze the long-term development of greenhouse gas emissions 

from transport in the Czech Republic. The paper shows not only trends from last years but although prediction over next 

five decades will be show in the paper. The long-term development is then compared with the goals of EU transport 

policy. 
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1. Introduction  

 

Sustainable transport has become a widely discussed topic in recent years. Generally we can state that 

sustainable development is an important factor in the development of individual economies. Sustainable transport is 

characterized as a transport that does not endanger public health or ecosystems, but at the same time it provides for 

transport demands so that competitiveness and regional development are supported [1]. Sustainable development 

concept is based on three pillars-the economic pillar, the environmental pillar and the social pillar [2]. The source 

accentuates the importance of the environmental pillar. Production of greenhouse gases (GHG) is one of the most 

frequently discussed issues that fall under this pillar in the area of transport; in particular it is the production of carbon 

dioxide (CO2). CO2 is considered to be the main cause of global warming [3-7]. Transport as a sector is specific by the 

fact that unlike in other national economy sectors where GHG emission are being reduced, in transport, in particular in 

individual car transport, CO2 [5] emissions are growing. GHG emissions reduction should therefore become priority 

number one, however, on the other hand it is essential to mention that this is in contradiction with growing global 

energy demands [4]. The key factor here is to fully realize that next to the technical aspects also transport behaviour has 

to change [7-9]. 

Considering indirect and long-term impacts is very important for the area of sustainable development planning. 

Thereby analyses of public policies and of related documents are of key importance. On the EU level the key document 

for this area is White Book of Transport Policy (White Book: Roadmap to a Single European Transport Area – Towards 

a competitive and resource efficient transport system; hereinafter the White Book) [10]. This White Book is based on 

the European Commission’s vision for transport in year 2050 titled Transport 2050 [11]. On the general level it is 

essential to reduce GHG emissions by 80%-95% compared to year 1990 level [10] by year 2050. To be able to reach 

this objective it is essential to cut GHG emissions from the transport area by at least 60% compared to year 1990 level 

by year 2050. An intermediate stage on this path towards reaching this goal is reduction of GHG emissions by 20% 

compared to year 2008 level by year 2030 [10]. The Czech Republic (CR) reflected this White Book strategy in its 

national transport strategy and in year 2013 the CR government passed a document “Transport Policy of the Czech 

Republic for 2014-2020 with the Prospect of 2050” [12]. 

The objective of this article is to analyse long-term development of GHG emissions produced by transport in the 

CR. This analysis shall be executed in two steps: 

1. An analysis of the development of GHG emissions produced by transport in the period 1990–2015.  

2. Evaluation of GHG emissions development in the context of the goals set in the White Book for years 2030 

and 2050. A prediction of future development of this indicator was done under this step.  

 

2. Methods 

 

The following models of Box-Jenkinson’s methodology have been used for the prediction of the development of 

GHG emissions. The B-J methodology is based on both probability and stochastic analyses of a time series where the 

time series values yt are explained by the preceding or the shifted values of the time series and by its random 

components [15]. The basic element in the random quantities [15]. The B-J methodology works with various forecast 

models; however, most often with Autoregressive Integrated Moving Average Models, that are marked as  

ARIMA (p, d, q) models and these models are applied for those time series in which there are not any seasons [15]. In 

case the relevant time series has seasons then, according to the author, for the prediction of the time series is used a 

more general model – model SARIMA. This model, next to a trend, includes also the above-mentioned seasons [15]. 

ARIMA(p, d, q) models are defined by the following formula [16]: 

 



 0 1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qy y y yφ φ φ φ ε ϑ ε ϑ ε ϑ ε− − − − − −= + + + + + − − − − , (1) 

 

Chyba! Nenalezen zdroj odkazů.here p – the number of autoregressive terms; q – the number of lagged error terms; ϕ 

– the coefficients of the autoregressive terms; ϑ  – coefficients of the moving average terms and εt – white noise 

process. 

Box-Jenkinson‘s methodology includes four steps [16]: 

1. Model Identification 

2. Guesstimate of Model Parameters 

3. Model Diagnostic 

4. Calculation of Prediction. 

Correct combinations of parameters p, d and q values are selected in the framework of model identification. 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) are consequently applied for the 

identification of the model, graphs of these functions respectively. Prior to the calculation of ACF itself and PACF itself 

estimates it is important to identify any presence of a trend and of „outliers“ observations. Further it is essential to 

evaluate if it is or if it is not essential to execute transformation stabilizing the range of scatter. However, in the majority 

of cases it is sufficient to utilize a suitable level of time series differentiation. In this model the desired level of 

differentiation is labelled as d.  

The estimation of parameters for the model that includes estimation of auto regression parameters and estimation 

of moving average is executed by means of the method of the smallest squares, or possibly by the non-linear method of 

smallest squares or by the method of maximum credibility that is used most often. The objective of the maximum 

credibility method is estimation of parameters 1 1,..., ; ,..., ;p qφ φ ϑ ϑ µ  and 
2

ησ , where the credibility function reaches 

its maximum (2), where T is the number of observations after differentiation (3). 
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In the framework of model diagnosis the following is executed: testing of stationarity and seasonality by means 

of Dickey-Fuller’s test, testing of estimated parameters by means of t-tests, testing of the model as a whole respectively 

[17]. Consequently residua of the estimated model are tested by means of correlation analysis; in concrete words it is 

tested whether they might be statistically significant and represent so called white noise process (εt) [16]. This 

represents a sequence of independent random values with the same distribution with zero mean value and with constant 

spread and that means that errors are distributed evenly according to relations (4), (5) and (6). εt is characteristic by its 

following values of the auto-covariance (7), autocorrelation (8) and partial autocorrelation functions (9). [18] 
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In case all conditions are fulfilled, it is possible to use the estimated model for the prediction of time series. In 

the opposite case it is essential to come back to the model identification step and to repeat the entire process. 

In case of some time series there may happen that two or more models suitable for these time series can be 

identified. The most suitable model is always the one that minimizes the criteria value. It is possible to use the 

following criteria: Akaike Information Criterion (AIC) (10) [19, 20], The Akaike Information Criterion with 

a correction, (AICc) (11) [21, 22] and Bayesian extension of Information Criterion (BIC) (12) [23]. Criteria do not 



cause any distortion as for instance the determination index in classical regression. 

 

( ) 2ˆln 2AIC M T Mεσ= +  (10) 

 

here T – the number of observations after differentiation, M – the number of parameters M = p + q, 
2ˆεσ  – residual 

scattering of the observed time series. 
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here 
2ˆ
Xσ  – selection scattering of the analysed time series. 

 

The probability calculation phase includes in itself also the calculation of the forecasts and of their reliability 

intervals. General forecast ˆ ( )nX h∗
 is illustrated by the relation (13), where h is the horizon of the forecast [16]. In case 

that h > p and h < q, the forecast can be written in the following way (14). The reliability intervals for forecast of time 

series ˆ ( )nX h∗
 is calculated by relation (15) where is valid (16) [16]. 
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3. The development of GHG emissions produced by transport in the CR in the period 1990–2015 

 

The development of GHG emissions produced by transport in the CR (measured in million tons CO2 equivalent, 

MT of CO2eq) illustrated in Fig. 1, can be grouped into three periods. In years 1990–2007 (with the exception of year 

1991 – decline by 0,89 MT of CO2eq and 2000 – decline by 0,05 MT of CO2eq) GHG emissions increased 256,6 %; 

from value 7,28 MT of CO2eq in year 1990 up to value 18,69 MT of CO2eq in year 2007. The biggest increment in 

emissions was in years 2003 (1,77 MT of CO2eq) and 1992 (1,58 MT of CO2eq). In year 2007 transport produced the 

largest volume of GHG emissions – 18,69 MT of CO2eq - which represents nearly 2,6multiple of the 1990 value. In the 

second period, that means in years 2008-2013, GHG emissions showed a declining trend; from value 18,56 MT of 

CO2eq in year 2008 the volume of emissions declined by 11,4 % and reached the volume of 16,43 MT of CO2eq in 

year 2013. The largest year-on-year decline (1,01 MT of CO2eq) was observed in the period 2009 to 2010. In the last 

two observed years we can see a growing trend-the volumes grow; in year 2014 by 0,54 MT of CO2eq up to the volume 

of 16,97; in year 2015 by 0,78 MT of CO2eq up to volume of 17,75 MT of CO2eq. In year 2015 GHG emissions got up 

to the level of year 2006. 
 



 
 

Fig.1 The development of GHG emissions produced by transport (MT of CO2eq) [24] 

 

4. Prediction 

For time series modelling, R software (the R Project for Statistical Computing) was used. In R software all steps 

required in ARIMA modelling are contained in a function auto.arima(), which returns best ARIMA model according to 

either AIC, AICc or BIC value. The function conducts a search over possible model within the order constraints 

provided. Considering the emission data are annual and there appears to be no seasonal pattern, a non-seasonal ARIMA 

model was selected. For modelling there was selected ARIMA(2,1,0) model with non-zero mean or just AR(2) model 

including intercept: 

 

1 20,1295 0,5617t t t ty y y ε− −= ∆ − ∆ +  (10) 

1t t ty y y −∆ = −  (11) 

 

here ∆yt – the first time difference (11): 
 

 
 

Fig. 2 The line chart of the analysed time series 
 

 
 

Fig. 3 ACF and PACF functions visualisation 



 

In Fig. 2 and Fig. 3 there are illustrated basic characteristics of a time series. Fig. 2 shows basic line chart of the 

analysed time series (their differences respectively). In Fig. 3 we can see visualisation of ACF and PACF functions. 

These functions can be utilized for identification of a suitable model and they are on top of this also a suitable model 

tool for evaluation of time series stationarity.  

In case of the observed time series the suitable model was selected based on information criteria (Table 1). BIC 

was taken as the key decision point. ACF and PACF functions were considered primarily for verification of the 

hypothesis of stationarity. In our research however the main tool for confirmation of the stationarity hypothesis remains 

to be tests specifically designed for these purposes. One of the most important indicators of no-stationarity time series is 

that majority of ACF and PACF values oscillate around the value 1, however in our case this does not represent any 

problem. 

 

Table 1 

Values of the criteria 
 

AIC 56,14 

AICc 57,28 

BIC 59,8 

 

The result of the prediction of GHG emissions development with time is illustrated in numbers in Tab.2 and it is 

graphically illustrated in Fig.4. Concrete values of the prediction of GHG development, calculated by means of ARIMA 

model, are defined by the top and the bottom borderlines of the given confidentiality interval. Calculations were done 

for reliability levels of 80%. 

Tab.2 summarizes forecasted values for key years 2030 and 2050 to which the transport policy goals in the area 

of GHG emissions are related. 

 

Table 2 

GHG emissions produced by transport in the CR – outputs of the ARIMA model (MT of CO2 equivalents) 
 

Year The mean Value Low 80 High 80 

2030 20,34 11,96 28,72 

2050 20,47 1,96 38,99 

 

Fig.4 shows forecast of development of GHG emissions calculated using the ARIMA model. Charts are executed 

separately for the forecast till year 2030 and for year 2050. Results for HGH emissions forecast for year 2030 show 

values with higher level of reliability. 

 

 
 

Fig. 4 The forecast till year 2030 and 2050 

 

3. Conclusions 
 

A development analysis of GHG emissions produced by transport between years 1990 and 2015 was executed in 

this article. In this period there was a significant increase in the total volume of GHG emissions, however this increase 

is not continuous throughout the period. Based on the data from the observed period a prediction of possible GHG 

emissions development till the year 2050 was made. The prediction was created by using the Box-Jenison’s 

methodology, specifically using the ARIMA model. The results of the prediction do not show any decline which was 

set in the White Paper. It is important to mention that this prediction is based on the current situation; however, it takes 



into account many deviations from the current state probably caused by introduction of suitable measures to reduce 

GHG emissions or by increasing GHG emissions due to unexpected effects. 

According to the White Paper provision, at least 60% reduction of GHG emissions is necessary to be made in the 

transport sector till the year 2050 compared to the year 1990, which represents a value of 3,14 MT of CO2eq. Reduction 

of GHG emission by 20% below the level of year 2008 (representing the value of 14,85 MT of CO2eq) 

is an intermediate stage in achieving the ultimate goal. It is impossible to reach this intermediate stage in case that no 

measures for a GHG emissions reduction would be introduced (the median value calculated by ARIMA model for the 

year 2030 is 20,34 MT of CO2eq). Meeting the goals set for year 2050 requires a much more dramatic reduction of 

GHG emissions, especially due to the fact that the above mentioned 60% GHG emissions reduction is related to year 

1990 (when the level of GHG emissions was less than half of the year 2008 level). GHG emissions should be perceived 

as a major problem of contemporary society which is needed to be solved for human future on the Earth, so all the 

scientific skills should be fully involved.  
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