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Abstract 
The article deals with the loss of stability of a cylindrical shell at dynamic transverse load. A 
typical practical example of this kind of construction is a road tank welded to saddle 
supports. All known domestic or foreign standards or recommendations for thin-walled shell 
structures such as ČSN 690010 [1], EN 13445-3 [2], EN 1993-1-6 [3], AD-Merkblätt [4], 
DIN 18800 [5], ASMECode [6], European recommendation ECCS 2008 [7] etc., provide the 
solution of stability of thin-walled shell structures for static load only. However, the situation 
of the traffic vehicles like road tanks is more complex because, in the vast majority of 
cases, these are loaded dynamically. Within this article, computational FEM analysis of the 
dynamically loaded cylindrical shell has been applied on a geometrically reduced model, 
which will later be more suitable for experimental verification. The cylindrical shell is firmly 
attached to the single saddle support through which both static and dynamic reaction 
forces are transmitted. The saddle support embracing angle takes values 2 = 
60°/90°/120° in accord with the demand of the standards and recommendations mentioned 
above. At first, the loss of stability of the statically loaded cylindrical shell has been 
analysed. Both geometric and material nonlinearities have been taken into consideration. 
The geometric nonlinearity describes the loss of stability while material nonlinearity 
describes the limit state of elastic-plastic carrying capacity. The resulting phenomenon is 
a nonlinear stability snap-through of the saddle support into the cylindrical shell in the 
elastic-plastic field due to the static load. At second, the dynamic analysis of the same 
problem follows. The initial load velocity is selected in the range of 1 to 15 msec-1. The 
upper limit of the initial velocity corresponds to the maximum possible piston speed of the 
hydraulic pulsator installed at Education and Research Center in Transport (ERCT) of the 
Faculty of Transport Engineering, University Pardubice. The hydraulic pulsator will be used 
for the planned experimental testing designed based on the analysis results presented in 
this article. At the end of the article, the static and dynamic load capacities of the 
computational model have been compared and then conclusions have been made based 
on this outcome. 
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 INTRODUCTION 

The shell structures are represented in the transport technology significantly. Their main 
advantage is low weight at relatively high rigidity and strength. The largest share of the shells used 
in the transportation technology is evident from the design of the self-supporting skeletons of cars 
or road tanks, which are subjects to this article. A typical road tank is a horizontal cylindrical shell 
firmly attached (usually welded) to saddle supports. The existing standards and recommendations 
[1 to 7] only offer the methodology and analytical formulas for stability evaluation of statically loaded 
shells on the saddle supports such as horizontal storage tanks and reservoirs in chemical and 
energy industries. The load is represented by the radial reaction force acting on the cylindrical shell 
from the saddle support side. In the field of transport, however, it is essential to know the behaviour 
of dynamically loaded road tanks. The time-varying load imitates the real load of the shell when 
driving a road tank on uneven terrain. Fig.1 shows a typical example of a road tank which is 
attached to the truck with a saddle supports [8]. 

Excessive static load of the thin-walled road tank results in a snap-through of the saddle into 
the shell in the elastic-plastic area. Both geometric and material nonlinearity is applied. The 
cylindrical shell loaded with transverse force (saddle reaction) needs to be considered as a 
substantially geometrically nonlinear structure as the shell is thin-walled and as there is a high 
proportion of bending stresses in relation to the basic membrane stresses [9]. Therefore, the linear 
buckling analysis (LBA) suitable for elastic stability problems can only be used for basic orientation 
with the utmost caution. 

 

 
Fig. 1 Road tank anchored on the saddle supports [8] 

Even though the determination of the carrying capacity of the statically loaded cylindrical shell 
on the saddle supports is possible based on the standards and recommendations [1 to 7]. 
A comprehensive methodology for dealing with this problem for dynamic loading still has not been 
available. However, an increasing carrying capacity with increasing load speed can be expected. 
This has to be proved by following computational non-linear analyses. 

 ANALYSIS 

The computational analysis of the carrying capacity of the cylindrical shell on the single saddle 
support of various embracing angles 2 = 60°/90°/120° and various initial velocities v0 =115 m/sec 

has been performed. The weight of the model identical to the weight of the planned reduced test 
sample of the road tank is mTOT = 8,3 kg. Neither the various saddle support width 2b nor the initial 
shape imperfections of the shell have been taken into consideration yet. All the analyses have been 
performed by means of the computer program SIMULATION [10]. 

Before the actual dynamic analysis of the computational model, several assistive 
computational procedures have been made. These include Linear buckling analysis (LBA), 
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Geometric and material nonlinear analysis (GMNA) and Modal analysis (MA). The LBA provides a 
very rough stability estimation of the computational model in the linear field, while GMNA provides a 
relatively precise carrying capacity of the model in the elastic-plastic field. MA leads to the lowest 
significant eigenvalue necessary for the calculation of the simplified Rayleigh’s damping coefficients 
,  (proportional damping). The used methods are described in more detail later. 

2.1 Computation model of the road tank 

The computation model of the road tank on saddle supports is not in 1:1 scale, but it is 
diminished to allow the easier performance of the planned experiments in a laboratory. A non-
dimension thin-wall r/t parameter is used for this purpose. For simplicity, saddle support fixed at the 
base is not equipped with backing plates (in the shell-saddle joint) as a real road tank. The basic 
input parameters of the computational model are listed in Tab. 1. 

Tab. 1 Basic input parameters of the computational model 

Length of the cylindrical shell L [mm] 300 
Radius of the shell r [mm] 75 
Thickness of the cylindrical shell t [mm] 0,55 
Thickness of the end tf [mm] 30 
Width of the saddle support 2b [mm] 20 
Embracing angle of the saddle support 2 [°] 60,90,120 
Material of the calculation model [-] P235GH 
Yield stress at the room temperature Rp0,2 [11] [MPa] 235 
Total weight of the calculation model mTOT [kg] 8,3 

 

 
Fig. 2 Illustrative view of the computation model of a road tank with basic dimensions in [mm] for embracing 

angle of saddle support 2 = 90° 

Significant bending stresses induced by the saddle reaction are in the area between the 
circular lids and saddle support. This area is called the large shape discontinuity ɑ [3] within which 
the bending stress is damped to an insignificant value. The specified shell length of the 
computational model guarantees that the stability analysis results in the saddle support area are not 
influenced by stiff circular lids. The large shape discontinuity for a cylindrical shell loaded with 
internal and external pressure can be expressed by the following equation [3]: 

 mmtra 1,1655,0755,25,2  , (1) 
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where a represents the distance of 16,1 mm in which the maximum stress drops to 4%, r and t are 
the parameters from Tab. 1.  In the distance of 32,2 mm, the maximum stress drops to 4 ‰ as 
follows: 

 mmtra 2,3255,0755,25  . (2) 

In case of a cylindrical shell loaded with the saddle support reaction, a slower drop in stresses is 
expected. In spite of this, the results are supposed to be quite satisfactory, due to the sufficient 
shell length of 300 mm. It is, therefore, possible to expect relevant results, unnoticeably influenced 
by rigid circular lids. 

2.2 Linear elastic bifurcation analysis (LBA) 

The following chapter describes the linear buckling analysis (LBA), solving the static linear loss 
of stability of the cylindrical shell on the saddle support. The rough optimistic results were expected 
since the used LBA is only convenient for structures with quite predominant membrane stresses 
over the bending stresses. The main result is the lowest eigenvalue which represents the critical 
force FCR for the unit load force F = 1. The corresponding eigenvector represents the shape of the 
deformation of the computational model at the moment of the loss of stability induced by the critical 
force FCR. The physical sense has only the lowest eigenvalue and its corresponding eigenvector 
[12,13]. 

                 
Fig. 3 Boundary condition (left), load (right) 

The boundary conditions of the model and the calculated critical force for the various saddle 
support embracing angles are shown in Fig. 3 and Tab. 2. In fact, significantly lower values of limit 
forces FLIM obtained by geometric and material nonlinear analysis GMNA can be expected. 

Tab. 2 Critical forces of considered saddle support embracing angles 

Embracing angle of 
the saddle support  60° 90° 120° 

FCR1 [N] 7 576 17 082 29 029 
 

2.3 Geometrically and materially nonlinear analysis (GMNA) 

This chapter is devoted to the static geometrically and materially nonlinear analysis (GMNA). It 
results in a static carrying capacity of the shell represented by the limit vertical force FSlim. The 
boundary conditions are the same as in the LBA in the previous chapter i.e., the saddle support is 
fixed at the base. The unit vertical force in the gravity direction is applied to both circular lids. The 
computational process has been controlled by the load curve arc increment process (Riks method) 
described in detail in literature [9]. The limit static forces for the considered embracing angles of the 
saddle support are shown in Tab. 3. The forces are compared with the significantly conservative 
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forces Qpl,Rd obtained by the approximate analytical calculation [7]. It is evident, that the limit force 
of the approximate analytical solution for embracing angle 2 = 120° is nearly 3 times lower than 
the limit force obtained by much more precise complete numerical analysis GMNA. 

Tab. 3 Limit forces for considered embracing angles of the saddle support 

Embracing angle of 
the saddle support  60° 90° 120° 

FSlim [N] 2 452 4 630 9 866 
Qpl, Rd [7] [N] 1 695 2 543 3 390 

 
For completeness, the following analytical formula to determine the approximate conservative 

limit force is used 
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where r, t and 2 are defined in chapter 2.1 and other parts of formula (3) are shown below: 

s - length of the saddle periphery in touch with the shell (s =  ∙ r ∙ 2 180)⁄ , 
lr - reference length (lr = r ∙ √r ∙ t) [7], 
fy,d - yield strength. 

2.4 Modal analysis of cylindrical shell welded to saddle support  

The main objective of the modal analysis (MA) is to find the lowest significant eigenvalue in the 
form of a squared natural angular frequency 2. This is obtained by solving a homogeneous set of 
interdependent differential equations of the second order of the discrete FEM system (the 
generalized problem of eigenvalues and eigenvectors) [12, 13] 

 0
..

 , (4) 

where  M   - mass matrix, 
 K    - stiffness matrix, 

 ∆,̈ ∆ - nodal acceleration vector, nodal displacement vector. 
  
The subspace iteration method is used to solve the characteristic determinant 

 .0)det( 2    (5) 

Modal analysis has been performed for all three chosen to embrace angles of the saddle support 
2 = 60°/90°/120°. Tab.4 lists the first four natural frequencies (𝑓𝑖 = 𝜔𝑖 2𝜋⁄ ) of the model for all 
considered embracing angles of saddle support. 

Tab. 4 Summary of the natural angular frequency of all considered saddle support embracing angles 

Embracing angle of 
the saddle support  60° 90° 120° 

1.Mode [Hz] 26,0 51,8 89,7 
2.Mode [Hz] 42,7 81,2 127,6 
3.Mode [Hz] 146,9 218,3 290,8 
4.Mode [Hz] 200,8 271,5 321,4 
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Fig. 4 The first nature mode (eigenvector) for saddle support embracing angle 2 = 90° 

For all the three cases of the embracing angle, the first natural frequency was significant since 
the corresponding modal mass m1 reached about 60 % of the total mass of the model mTOT. It 
means that 60% of the total mass vibrates in the first natural frequency with the first natural mode. 

Based on the first natural frequencies, and further on the damping ratio  = c cCR⁄  0,04 valid 
for welded steel structures vibrating in the elastic-plastic limit state [14], the Rayleigh damping 
coefficients 1, 1 are determined. Due to the fact that the structure is damped at the first natural 
frequency at least, uniform damping at all frequencies  = 1 = 0,04 is conservatively considered. 
Therefore, it is possible to write  = 1,  = 1. In the case of the cylindrical shell on the saddle 
support, damping has rather the numerical stabilization effect (it does not represent permanent 
vibration). For this reason, the Rayleigh coefficients for the angle 2 = 90 ° may be used for all 
three embracing angles 2 = 60°/90°/120°. 

The procedure for the determination of the Rayleigh damping is given below. The damping 
matrix C can be simply expressed as a linear combination of the mass matrix M and stiffness matrix 
K [13,15]. It means that the damping forces are proportional to both the inertial forces and stiffness 
forces. 

  C  (6) 

Rayleigh’s coefficients for saddle support embracing angle 2  = 90° are: 

 1

01 sec01,135,32504,0   , (7) 

 sec1023,15,325/04,0/ 4

01

  , (8) 

where the corresponding angular velocity is: 

 1

0101 sec5,3258,5122  radf  . (9) 

The above-specified Rayleigh coefficients  and  are further used in the nonlinear dynamic 
analysis. 
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 DYNAMIC ANALYSIS OF CYLINDRICAL SHELL ON SADDLE SUPPORT 

The computational model dynamic nonlinear analysis is solved by a direct integration of the 
system of interdependent ordinary differential equations of the 2nd order of the discrete 
computational FEM model [13]: 

 )(
...

tF , (10) 

where  M        - the mass matrix, 
 C        - the damping matrix, 
 K        - the stiffness matrix, 
 F(t)    - time-dependent load vector, 

 ∆,̈ ∆,̇ ∆ - nodal acceleration/velocity/ displacement vector. 
 
This is a dynamic problem with the consideration of geometrical and material nonlinearity. The 

Newmark integration method is used in the maximum time interval 𝑡00,001  sec with the 
integration step of approximately t/50 (automatic selection of the integration step length) to 
calculate the response to the time variable load. The initial velocity v0 = 1/2/3/4/5/10/15 msec-1 in 
the gravity direction is specified on both rigid circular lids. The saddle support is fixed at the base 
where the resulting time dependent vertical reaction is detected. 

The load characteristic of Fig. 5 to Fig. 8 expresses the time course of the resulting reaction for 
selected initial velocity v0 = 1, 3, 10 msec-1 and embracing angle 2 = 60°,90°,120°. The figures 
show that the course is higher and steeper with a higher load speed and vice versa. Fig. 8 shows a 
deformed cylindrical shell with the saddle support of embracing angle 2 = 60° in time 0, 0006 sec. 

 

  
Fig. 5 Saddle support reaction for v0 = 1 m.s-1 

 
Fig. 6 Saddle support reaction for v0 = 3 m.s-1 
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Fig. 7 Saddle support reaction for v0 = 10 m.s-1 

 
Fig. 8 Dynamic GMNA – total displacements for 2=60° 

An important parameter of dynamic analysis is the magnitude of the maximum force Fmax=-FRmax 
which leads to a stability snap-through of the saddle support into the cylindrical shell. These values 
are normalized to the static limit force FDlim/FSlim and are built for all considered embracing angles 
and initial velocities into the diagram in Fig. 9. The higher carrying capacity of the dynamically 
loaded model is obvious. The computational model is more than two times more effective than a 
statically loaded model for embracing angle 2 = 60° and initial velocity over 8 msec-1. 
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Fig. 9 Diagram of the ratio FDlim/FSlim versus the initial velocity vo 

It is also evident that the saddle support does not snap-through into the shell for the initial 
velocity v0 = 1 m.s-1 and the saddle support embracing angles 2 = 90°, 120°. This is caused by the 
small initial momentum p0 = m.v0 of the computational model with the considered model weight of 
mTOT = 8,3 kg. 

 CONCLUSION 

Based on the results of the analysis, the behaviour of the cylindrical shell welded to the saddle 
support has been investigated. The limit loads leading to the stability snap-through of the saddle 
into the shell in the elastic-plastic field have been found. The dynamic analysis has been performed 
for various saddle support embracing angles 2 = 60°/90°/120° and for various initial velocities of 
the cylindrical shell v0 = 1, 2, 3, 4, 5, 10 and 15 msec-1. It is evident that the limit force of the shell is 
increasing with the increasing initial velocity. The shell exhibits higher load carrying capacity at a 
dynamic load (stability resistance) than at a static load. In case of the saddle support embracing 
angle 2 = 60° and the initial velocity v0 = 15 msec-1, the difference is more than twice as big. On 
the other hand, it is obvious that for a low initial velocity at a given weight of the structure, the 
stability snap-through does not occur. The shell oscillates around the established equilibrium 
position (v0 = 1 m/sec, 2 = 90° and 2 = 120°. 

The work introduced in this article is the basis for a research in dynamic loading of a cylindrical 
shell firmly attached to a saddle support. In the next phase of the research, the attention will be 
drawn to the influence of initial manufacturing imperfections on the dynamic stability of this type of 
construction. The results will be verified by planned experiments on a reduced model at Education 
and Research Center in Transport (ERCT) of the Faculty of Transport Engineering, University 
Pardubice. 

This research has been supported by the University of Pardubice in the scope of FRVŠ 1116/2011 project. 
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