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ABSTRACT 

The paper deals with a very common situation in many 

control systems and this is the fact that, for zero control 

action, the controlled variable is nonzero. This is often 

caused by the existence of another process input which is 

uncontrolled. Classic controllers do not take into account 

the second input – instead, deviation variables are 

considered or some feedforward controller is used to 

compensate the variable. The authors propose a solution, 

that the process is considered as a system with two inputs 

and single output (TISO). Here, the uncontrolled input is 

estimated with the state observer and the controller is 

designed as the multivariable controller. A Linear-

quadratic (LQ) state-feedback control and model 

predictive control (MPC) of simple thermal process 

simulations are provided to demonstrate the proposed 

control strategy. 

 
INTRODUCTION 

Control theory is frequently using models in the form of 

transfer functions, which from the definition, consider 

zero initial conditions (Åström and Murray 2010; Nise 

2010; Ogata 1995; Skogestad and Postlethwaite 2005). 

This means practically that for zero control action the 

controlled variable will be zero as well. Unfortunately, 

this is not true for many practical applications. Even a P 

controller will not work very well and the situation is 

even worse for advanced controllers based on state space 

process models. These models are similar to P or PD 

controller formulations – without integral control action. 

One solution is subtracting working point variables and 

introducing deviation variables – “zero initial condition” 

will be met. Integral control action, to ensure offset-free 

reference tracking, is another interesting problem to solve 

(Maeder and Morari 2010; Dušek et al. 2015). But why 

not use the natural process model with disturbance 

variables and their dynamical effects, directly for the 

controller design? Then the control task can be solved as 

a multivariable control problem when only some of the 

process inputs are used as control variables, while the 

others are considered as disturbances. Disturbance 

modelling and state estimation for offset free reference 

tracking control problems, was published in (Muske and 

Badgwell 2002; Pannocchia and Rawlings 2003; 

Tatjewski 2014). 

 

Authors propose to estimate the disturbance variable by 

the augmented state observer. Extended formulation of a 

standard LQ state-feedback controller and predictive 

controller, so that the disturbance information is an 

integral part of the controller, is presented in the paper. A 

simple thermal process with electrical heating, ambient 

temperature effect and temperature sensor is modeled 

analytically by the first principle approach. The model 

has two inputs and one output. One of the inputs is 

heating power, while the other is ambient temperature. 

The output is the temperature sensor measured 

temperature. A discrete time linear time invariant process 

model is used for LQ controller design with infinity 

horizon and asymptotic set point tracking and predictive 

controller with finite horizon and special formulation of 

the cost function. Deviations of future states from desired 

states, calculated from the future set point knowledge, are 

considered instead of the future control errors which are 

commonly used in the literature (Camacho and Bordons 

2007; Kouvaritakis and Cannon 2015; Maciejowski 

2002; Rawlings and Mayne 2009; Rossiter 2003). 

 

PROCESS MODEL WITH OFFSETS 

Let us consider the controlled process with variable um as 

the control variable (control action) and ym as controlled 

variable. Disturbance (offset) variables u0 and y0 are 

considered as process input and additive disturbance on 

the process output – see block diagram in Fig. 1. 

 
Figure 1: Process model 

Discrete time state space process model can be written as, 

 
𝒙(𝑘 + 1) = 𝐀𝒙(𝑘) + 𝐛𝑢𝑚(𝑘) + 𝐛0𝑢0

    𝑦𝑚(𝑘) = 𝐜𝒙(𝑘) + 𝑦0
 (1) 

If we know the steady state input and both the offsets, the 

steady state output can be calculated as 

𝑢𝑚(𝑘) 

𝑢0 
𝑦(𝑘) 𝑦𝑚(𝑘) 

𝑦0 

Process 

  



 

 

 𝑦𝑚 = 𝐜(𝐈 − 𝐀)
−𝟏𝐛⏟        

𝑝

𝑢𝑚 + 𝐜(𝐈 − 𝐀)
−𝟏𝐛0⏟        

𝑝0

𝑢0 + 𝑦0 (2) 

 

and the steady state input (we will use this in controller 

design) 

 

 𝑢𝑚(𝑘) =
1

𝑝
(𝑦𝑚 − 𝑦0) −

𝑝0

𝑝
𝑢0 (3) 

 

DISTURBANCE STATE ESTIMATION 

The disturbances can be measured or estimated. In our 

case, we are using augmented state estimation for 

estimating the state vector and disturbance variable u0, 

while y0 must be known. It is not possible to estimate both 

offsets simultaneously. If u0 is known, y0 can be 

calculated from the steady state. 

 

We introduce the augmented state space model as 

 

 [
𝐱(𝑘 + 1)
𝑢0

]
⏟      
𝐱𝒓(𝑘+1)

= [
𝐀 𝐛0
0 1

]
⏟    

𝐀𝑟

[
𝐱(𝑘)
𝑢0

]
⏟  
𝐱𝒓(𝑘)

+ [
𝐛
0
]

⏟
𝐛𝑟

𝑢𝑚(𝑘) (4) 

𝑦𝑚(𝑘) − 𝑦0⏟      
𝑦𝑟(𝑘)

= [𝐜 0]⏟  
𝐜𝑟

[
𝐱(𝑘)
𝑢0

]
⏟  
𝐱𝒓(𝑘)

 

 

State estimator with gain K has the form 

 

 �̂�𝑟(𝑘 + 1) = 𝐀𝑟�̂�𝑟(𝑘) + 𝐛𝑟𝑢𝑚(𝑘) + 

                                         + 𝐊(𝑦𝑚(𝑘) − 𝑦0 − 𝐜𝑟�̂�𝑟(𝑘)) (5) 

 

We are estimating in vector �̂�𝑟(𝑘), all the state variables 

and disturbance variable u0, from variables 𝑢𝑚(𝑘), 
𝑦𝑚(𝑘) and from the known output offset 𝑦0. 

 

CONTROLLER DESIGN 

Two types of controllers based on the state space process 

model are modified so that the estimation of the 

disturbance variable u0 can be used as an integral part of 

the controller design. 

LQ controller 

Linear-quadratic state-feedback controller with infinite 

horizon cost function is 

 

 𝐽 = ∑ [
𝐱𝑇(𝑘 + 𝑖)𝐐𝐱(𝑘 + 𝑖) +

𝑢𝑇(𝑘 + 𝑖 − 1)R𝑢(𝑘 + 𝑖 − 1)
]∞

𝑖=1  (6) 

 

Negative state feedback controller part is 

 

 𝑢(𝑘) = −𝐋𝐱(𝑘) (7) 

 

To be able to follow the set point asymptotically we are 

introducing a feedforward path with control variable 

𝑢𝑓(𝑘) – see Fig. 2. 

 

 

 

Control action is 

 

 𝑢𝑚(𝑘) =  𝑢(𝑘) + 𝑢𝑓(𝑘) (8) 

 
Figure 2: LQ Controller 

 

Steady state output can be calculated as 

 

 𝑦𝑚 = 𝐜(𝐈 − 𝐀 + 𝐛𝐋)
−𝟏𝐛⏟            

𝑝𝐿

𝑢𝑓 +

                                   + 𝐜(𝐈 − 𝐀 + 𝐛𝐋)−𝟏𝐛0⏟            
𝑝𝑜𝐿

𝑢0 + 𝑦0 (9) 

 

If ym = w(k) then the feedforward control variable is 

 

 𝑢𝑓(𝑘) =
1

𝑝𝐿
(𝑤(𝑘) − 𝑦0) −

𝑝𝑜𝐿

𝑝𝐿
𝑢0 (10) 

 

and the control action is 

 

 𝑢𝑚(𝑘) = −𝐋𝐱(𝑘) + 𝑢𝑓(𝑘) (11) 

Model predictive controller 

We consider the special matrix form cost function 

formulation for model predictive controller as 

 𝐽(𝑁) = (𝐱𝑁 − 𝐱𝑁𝑤)
𝑇𝐐𝑁(𝐱𝑁 − 𝐱𝑁𝑤) + 𝐮𝑁

𝑇𝐑𝑁𝐮𝑁 (12) 

 

where uN is the vector of future control actions deviations 

from previous control action for a prediction horizon of 

N, which is given by, 

 

𝐮𝑁 = [

𝑢𝑚(𝑘)

𝑢𝑚(𝑘 + 1)
        ⋮

𝑢𝑚(𝑘 + 𝑁 − 1)

]

⏟          
𝐮𝑁𝑚

− [

𝑢𝑚(𝑘 − 1)

𝑢𝑚(𝑘 − 1)
⋮

𝑢𝑚(𝑘 − 1)

]

⏟        
𝐮𝑁𝑚0

  

 

and xN is the vector of future predicted states deviations 

from future desired states xNw 

 

𝐱𝑁 − 𝐱𝑁𝑤 = 𝐒𝑥𝑥𝐱(𝑘) + 𝐒𝑥𝑢𝐮𝑁𝑚 + 𝐒𝑥𝑢0𝐮𝑁0⏟                  − 𝐱𝑁𝑤 =
𝐱𝑁

 

         = 𝐒𝑥𝑥𝐱(𝑘) + 𝐒𝑥𝑢𝐮𝑁 + 𝐒𝑥𝑢𝐮𝑁𝑚0 + 𝐒𝑥𝑢0𝐮𝑁0 − 𝐱𝑁𝑤⏟                
𝐨

 

 

𝐱𝑁 = [

𝐱(𝑘 + 1)

𝐱(𝑘 + 2)
⋮

𝐱(𝑘 + 𝑁)

] , 𝐒𝑥𝑥 = [

𝐀
𝐀2

 ⋮
𝐀𝑁

], 𝐮𝑁0 = [

𝑢0
𝑢0
 ⋮
𝑢0

], 

𝑢𝑚(𝑘) 

𝑢0 
𝑦(𝑘) 𝑦𝑚(𝑘) 

𝑦0 

Process 

  

𝒙(𝑘) 
-L 

𝑢𝑓(𝑘) 

𝑢(𝑘) 



 

 

𝐒𝑥𝑢 =

[
 
 
 
 

𝐛 0
       𝐀𝐛           𝐛

⋯ 0

⋮ ⋱ ⋮
𝐀𝑁−2𝐛 𝐀𝑁−3𝐛
𝐀𝑁−1𝐛 𝐀𝑁−2𝐛

⋯
𝐛 0
𝐀𝐛 𝐛]

 
 
 
 

  

𝐒𝑥𝑢0 =

[
 
 
 
 

𝐛0 0
       𝐀𝐛0           𝐛0

⋯ 0

⋮ ⋱ ⋮
𝐀𝑁−2𝐛0 𝐀𝑁−3𝐛0
𝐀𝑁−1𝐛0 𝐀𝑁−2𝐛0

⋯
𝐛0 0
𝐀𝐛0 𝐛0]

 
 
 
 

. 

 

Cost function (12) can be transformed to a form, 

 

𝐽(𝑁) =    𝐮𝑁
𝑇 (𝐑𝑁 + 𝐒𝑥𝑢

𝑇 𝐐𝑁𝐒𝑥𝑢)⏟            
𝐌

𝐮𝑁 + (13) 

𝐮𝑁
𝑇 𝐒𝑥𝑢

𝑇 𝐐𝑁[𝐒𝑥𝑥𝐱(𝑘) + 𝐨]⏟            
𝐦

+ [𝐒𝑥𝑥𝐱(𝑘) + 𝐨]
𝑇𝐐𝑁𝐒𝑥𝑢⏟              

𝐦𝑇

𝐮𝑁 + 

𝐱𝑇(𝑘)𝐒𝑥𝑥
𝑇 𝐐𝑁𝐒𝑥𝑥𝐱(𝑘) + 𝐱

𝑇(𝑘)𝐒𝑥𝑥
𝑇 𝐐𝑁𝐨 + 𝐨

𝑇𝐐𝑁𝐒𝑥𝑥𝐱(𝑘)

+𝐨𝑇𝐐𝑁𝐨⏟                                  
𝑐

 

 

Solution for the unconstrained case to this quadratic form 

can be calculated analytically as 

 

 𝐮𝑁 = −𝐌
−𝟏𝐦 (14) 

 

and the actual control action is 

 

 𝑢𝑚(𝑘) = 𝑢𝑚(𝑘 − 1) + 𝐮𝑁(1) (15) 

 

where 𝐮𝑁(1) is first element of vector of optimal future 

control actions deviation from previous control action. 

 

Vector of future desired states xNw is calculated from the 

future set points as 

 

𝐱𝑁𝑤 = [

𝐱𝑤(𝑘 + 1)

𝐱𝑤(𝑘 + 2)
⋮

𝐱𝑤(𝑘 + 𝑁)

] (16) 

 

where 

 

𝐱𝑤(𝑘 + 𝑖) = (𝐈 − 𝐀)
−𝟏𝐛𝑢𝑤(𝑘 + 𝑖) + (𝐈 − 𝐀)

−𝟏𝐛0𝑢0 

 

and 

𝑢𝑤(𝑘 + 𝑖) =
1

𝑝
[𝑤(𝑘 + 𝑖) − 𝑦0] −

𝑝0
𝑝
𝑢0 

 

THERMAL PROCESS 

We consider the simple thermal process, where E is a 

heating power, To is ambient temperature, TE, T and TC 

are temperatures of the heating element, body of the 

system and the temperature sensor respectively. The 

system has two inputs and one output – see Fig. 3. 

 

 

 

 

 

 

 

 

 

Figure 3: Thermal process 

 

We are modeling the process analytically with first 

principle and we consider individual subsystems as 

systems with lumped parameters for the sake of 

simplicity. 

 

Energy balance of the heating element is 

 

 𝐸 = 𝛼𝐸𝑆𝐸⏟
𝑠1

(𝑇𝐸 − 𝑇) + 𝑚𝐸𝑐𝐸⏟  
𝑚1

𝑑𝑇𝐸

𝑑𝑡
 (17) 

 

Energy balance of body of the system is 

 

 𝛼𝐸𝑆𝐸(𝑇𝐸 − 𝑇) = 𝛼𝑐𝑆𝑐(𝑇 − 𝑇𝑐) + 𝛼𝑆⏟
𝑠2

(𝑇 − 𝑇𝑜) + 

                                       + 𝑚𝑐⏟
𝑚2

𝑑𝑇

𝑑𝑡
 (18) 

 

Energy balance of the temperature sensor is 

 

 𝛼𝑐𝑆𝑐⏟
𝑠3

(𝑇 − 𝑇𝑐) = 𝑚𝑐𝑐𝑐⏟
𝑚3

𝑑𝑇𝑐

𝑑𝑡
 (19) 

 

State space model of the whole process is 

 

[
 
 
 
 
 
𝑑𝑇𝐸
𝑑𝑡
𝑑𝑇

𝑑𝑡
𝑑𝑇𝑐
𝑑𝑡 ]
 
 
 
 
 

=

[
 
 
 
 
 −

𝑠1
𝑚1

𝑠1
𝑚1

0

𝑠1
𝑚2

−
𝑠1 + 𝑠2 + 𝑠3

𝑚2

𝑠3
𝑚2

0
𝑠3
𝑚3

−
𝑠3
𝑚3]
 
 
 
 
 

[
𝑇𝐸
𝑇
𝑇𝑐

] + 

 

 +[

1

𝑚1

0
0

] 𝐸 + [

0
𝑠2

𝑚2

0

] 𝑇𝑜               (20) 

 

For the following simulations, we consider the 

parameters of the process as given in Table 1. 

 

Table 1: Process parameters 

 

  J.s-1.K-1  J. K-1 

Heating 𝑠1 0.5 𝑚1 1 

Body 𝑠2 2.5 𝑚2 25 

Sensor 𝑠3 0.1 𝑚3 0.5 
 

S,α,m,cSE,αE,mE,cE

Sc,αc,mc,cc

TE TcT

E=um

To

Tc=yTo=uo



 

 

SIMULATION RESULTS 

The gain of the state observer is calculated as a solution 

of dual problem to a linear-quadratic state-feedback 

controller for discrete-time state-space system calculated 

in MATLAB as with command 

 [KT,~,~] = dlqr(Ar
T,cr

T,Qe,Re) 

The penalization matrices are selected as Qe = eye(4) and 

Re = 0.1, and the sample time Ts = 2.5 s. State and 

disturbance estimation are demonstrated in Fig. 4. After 

a few seconds the state estimation errors drop to zero and 

the disturbance variable To is correctly estimated. 

 

 

 

 

 

 

 

 

 

Figure 4: State and disturbance estimation 

 

The gain of the LQ controller is calculated in the same 

way as the observer gain with MATLAB command, but 

only with modified penalization matrix Q 

 

 [𝐋, ~, ~] = dlqr(𝐀, 𝐛, 𝐐, R) 
 

𝐐 = [
1 0 0
0 1 0
0 0 100

] 

 

The control experiment can be seen in Fig. 5. The set 

point w is followed by the output Tc by controlling the 

heating power E (we do not consider constrains). 

 

The predictive controller has identical parameters. The 

prediction horizon N = 15. Fig. 6 shows the control 

response with the predictive controller. It can be seen 

that, the predictive controller starts in advance before the 

set point change and the quality of the control is slightly 

higher – standard deviation (SD) of control error is 8.9 

°C compared to 12.7 °C for LQ controller. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Control with LQ controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Control with predictive controller 

 

 

CONCLUSION 

The paper deals with a practical control issue, where for 

the steady state zero control input, the controlled variable 

is nonzero because of the offset or disturbance. Classic 

control methods are dealing with this problem by 

introducing deviations from a working point, integral 

actions, or feedforward parts of the standard single input 

single output (SISO) controllers. Authors propose, to 

work with the processes as with multivariable systems, 

and to design the controllers as a multivariable system. 

The disturbance (uncontrolled input variable) estimation 

method is presented in the paper. Subsequently, LQ and 

predictive controller design methods are modified that 

the estimated disturbance can be used as an integral part 

of the controllers. The set point is followed 

asymptotically with the LQ controller – feedforward 

controller path uses the offset information. Similarly, 

offset is used in the model predictive controller in free 

response calculation and for future desired states 



 

 

calculation as well. We are controlling sensor 

temperature but, it is also possible (without any 

problems) to control temperature of the body of the 

system; only by changing vector 𝐜 of the process model 

for the controller design. 

 

The paper is a nice example of the strength and elegance 

of state space methods for modelling, estimation and 

control. According to authors’ opinion these methods 

will become acutely relevant in the future. 
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