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ON REPORTING PERFORMANCE OF BINARY 
CLASSIFIERS 

Pavel Škrabánek, Petr Doležel 

Abstract: In this contribution, the question of reporting performance of binary 
classifiers is opened in context of the so called class imbalance problem. The class 
imbalance problem arises when a dataset with a highly imbalanced class distribution 
is used within the training or evaluation process. In such cases, only measures, which 
are not biased by distribution of classes in datasets, should be used; however, they 
cannot be chosen arbitrarily. They should be selected so that their outcomes provide 
desired information; and simultaneously, they should allow a full comparison of just 
evaluated classifier performance along, with performances of other solutions. As is 
shown in this article, the dilemma with reporting performance of binary classifiers can 
be solved using so called class balanced measures. The class balanced measures are 
generally applicable means, appropriate for reporting performance of binary 
classifiers on balanced as well as on imbalanced datasets. On the basis of the 
presented pieces of information, a suggestion for a generally applicable, fully-valued, 
reporting of binary classifiers performance is given.  
Keywords: machine learning, binary classification, class imbalance problem, 
performance measures, reporting of results. 
JEL Classification: C45, C83. 

Introduction 
In general, classification is a process in which objects, either real or abstract, are 

recognized, differentiated, and understood. This issue is important in various fields 
such as by text classification (Nigam, et al., 2000), in medicine (Goeuriot et al., 2016), 
or within visual information retrieval (Lew, 2001). Naturally, economics is no 
exception. The relevance of classification in this field is obvious e.g. in applications 
related to machine learning (Qiao, et al., 2016) or data mining (Feelders, 2002).  

From the perspective of machine learning or data mining, classification is the task 
of classifying elements of a given set into a predetermined number of groups, usually 
called classes. Although the number of classes might be any positive integer, just two 
classes are considered in many real-world applications. Such classification tasks are 
known as binary classification. Considering the status of the binary classification, let 
us focus on this issue in this contribution.  

The process of the classification is carried out by a classifier. The classifier assigns 
each element into one of the considered classes. The assignment is accomplished on 
the basis of a classification rule. The classification rule is formed both by selection of 
a classification method and on the basis of training data. To this day, a number of 
supervised classification methods have been introduced, such as k-nearest neighbour, 
neural networks, support vector machine, random forest, and many others (Murphy, 
2012). Selection of an appropriate classification method is carried out by an expert. 
Such a formed classifier is then trained on the training data. 



 

 

The previous description of classifier development might give the wrong notion 
that design of classifiers is a simple task. The opposite is true. Depending on the used 
classification method, several parameters are usually needed to be set, in order to 
obtain a classifier of a desirable performance. However, the performance of the 
classifier is also affected by other factors, such as generality of the training data, or 
appropriateness of the selected methods for a particular task. It is obvious that 
information about performance of the classifier is highly desirable in order to fulfil the 
practical need to perform comparisons across various classifiers, settings and datasets. 

Information about performance of a classifier can be acquired using a performance 
measure. In the case of binary classification, a variety of performance measures have 
been introduced, e.g. (Brodersen et al., 2010), (Garcia et al., 2010), (Hand, 2012), but 
not all of them are used in practice. To be honest, it is not so difficult to design a new 
performance measure; however, a successful measure needs to satisfy three basic 
criteria: 

 it must coherently capture the aspect of performance of interest; 
 it must be intuitive enough to become widely used, so that the same measure 

is consistently reported by a majority of researchers; 
 it must be simple to report, preferably as a single number, for each method-

setting-dataset combination. 
As already implied, even if a measure meets all the stated out requirements, its 

universal acceptance is not guaranteed. It might be pointed here that different 
application areas have different preferences for measures due to different goals. Over 
the time, sets of measures, preferred within each particular area, have been naturally 
formed. A new measure, which might be succeeding in a particular area, must 
naturally fit to the appropriate set of widely accepted measures. In other words, 
outputs of such a measure should enable a comparison with other published results. 
This basic requirement will be further called comparability requirement. However, 
there are also other aspects influencing the probability of acceptance of a new measure 
in an application area. One important aspect is behaviour of the measure on data with a 
highly imbalanced class distribution. 

Data with a highly imbalanced class distribution are said to suffer a class 
imbalance problem. Since class imbalanced datasets occur in many real-world 
applications, the class imbalance problem is a hot issue. This is evidenced by the long 
list of publications dealing with this topic. A large proportion of them deal with 
training of classifiers on imbalanced data; however, the class imbalance problem can 
also adversely affect the evaluation of classifiers. 

The adverse influence of class distribution on some performance measures has been 
known for a long time and some works dealing with the evaluation on imbalanced data 
have been already published. Nevertheless, none of them brings an answer to one 
fundamental question: Which measures should be chosen so that a desired information 
value would be kept and the comparability requirement would be met? This question is 
opened and analysed in context of binary classifiers in this contribution. On the basis 
of the analysis, a suggestion for a fully-valued reporting performance of binary 
classifiers, which reflects all the above stated facts, is given. For this purpose, so called 
class balanced measures are presented as the appropriate means. 



 

 

The rest of the article is organized in the following way. The class imbalance 
problem, and its impact on classification tasks, is considered in section 1. Basic 
variables used by evaluation of binary classifiers, and the most popular performance 
measures, are stated in section 2. The influence of imbalanced data on the performance 
measures is analysed in section 3. The class balanced measures are introduced in 
section 4. The opened question of reporting performance of binary classifiers is 
discussed in section 5. Finally, a conclusion is stated in section 6. 

1 Impact of the class imbalance problem on classification related tasks 
It is well known that a classifier trained on imbalanced data might be biased in 

favour of a major class. This issue has been widely studied and many related works 
have been published. A short summary about this issue is given in subsection 1.1. 
However, the class imbalance problem may become apparent also within an evaluation 
process. This issue is discussed in subsection 1.2. 

1.1 Training on imbalanced data 
As pointed out by (Garcia et al., 2007), two groups of approaches can be used to 

handle a class imbalance in data, by training of binary classifiers. Namely, a 
re-sampling method can be used, or measuring of a classifier’s performance in 
imbalanced domains can be utilized within a classification method. 

Generally, the re-sampling methods aim to form balanced datasets. Many different 
approaches belonging to this group have been presented, such as, random or focused 
over-sampling (Japkowicz et al., 2002); over-sampling with informed generation of 
new samples (Chawla at al., 2002); random under-sampling (Kotsiantis et al., 2003); 
or direct under-sampling (Mani et al, 2003). 

The second group of approaches is aimed to deal with imbalanced datasets directly. 
At first, it might be pointed out that some performance measures are not influenced by 
the distribution of classes in datasets. (Garcia et al., 2007) pointed to this fact and they 
have logically inferred that these measures can be safely used on imbalanced data. It is 
worth mentioning that new measures, which are resistant to imbalances in data, are 
constantly developed (Huang et al., 2007), (Brodersen et al., 2010), (Garcia et al., 
2010), (Koyejo et al., 2014). The essence of such measures was the inspiration of 
many classification methods which are designed for direct application on imbalanced 
datasets, e.g. (Barandela et al., 2003), (Rosenberg, 2012), (Koyejo et al., 2014). 

1.2 Evaluation on imbalanced data 
Although composition of datasets affects outcomes of some performance measures 

(Daskalaki et al., 2006), these measures are widely used due to their information value 
and comprehensibility (Hand, 2012). In order to keep the comparability, researchers 
usually report about performances of classifiers on datasets with nearly uniform 
distribution of classes. However, achievement of this precondition may not be always 
possible or advisable, such in the case of fraud detection (Phua et al., 2004), mining 
data streams (Zhao et al., 2012), or object detection (Škrabánek et al., 2016). 

As has been already mentioned, there are a number of performance measures 
resistant to distribution of classes in datasets. These measures can be safely used on 



 

 

imbalanced datasets. This fact is commonly used when facing the class imbalance 
problem within the evaluation process (Daskalaki et al., 2006), (Jeni et al., 2013), but 
this is not the adequate solution in each situation. 

In summary, despite general awareness about this issue, one fundamental question 
has not yet been opened nor answered. The question is, which measures should be 
chosen so that a desired information value would be kept and the comparability 
requirement would be met? Search for a generally valid answer to this question is the 
scope of interest in this article. 

2 Standard performance measure used by evaluation of binary classifiers  
Two classes, positive or simply P, and negative or simply N, are considered by the 

binary classification. The aim of a classifier is to correctly assign a class label to each 
judged sample. For each sample, the decision-making process falls into one of four 
possible scenarios: the sample is positive and the classifier correctly recognizes it as 
such (true positive or simply TP); the sample is negative and the classifier correctly 
recognizes it as such (true negative or simply TN); the sample is positive but the 
classifier labels it as negative (false negative or simply FN); or the sample is negative 
but the classifier labels it as positive (false positive or simply FP). 

On the basis of the presented scenarios, four fundamental quantities for 
performance measure are formulized: number of true positive TP ; number of true 
negative TN ; number of false negative FN ; and number of false positive FP  
samples. The quantities are usually summarized into a 2 2  matrix. The matrix is 
known as confusion matrix and it is traditionally expressed as in Tab. 1. 
Tab. 1: The confusion matrix 

 
Assigned label

positive negative

True label 
positive TP  FN  
negative FP  TN  

 Source: Authors 

A number of performance measures derived from the confusion matrix have been 
introduced up to the present (Choi et al., 2010). However, not all of them have been 
widely accepted. Moreover, different measures are preferred in various scientific 
fields. Thus, only the most frequently used measures are considered further. Namely, 
the following measures are considered: accuracy (acc), error rate (er), precision (pr), 
recall (re), specificity (sp), false negative rate (fnr), false positive rate (fpr), harmonic 
mean of precision and recall (Fscore), geometric mean of precision and recall 
(Gmean), and area under the ROC curve (AUC). 

3 Influence of imbalanced data on performance measures  
As was already mentioned, the class imbalance problem is caused by highly 

imbalanced distribution of classes in datasets. The unfavourable properties of some 
performance measures on imbalanced data are well known; however, the core of this 
issue is not visible at first glance. In this section, the relation between the measures 



 

 

and proportions of the classes in datasets is analysed. On the basis of the analysis, all 
the considered measures are expressed in the terms used within the analysis. 

3.1 Preliminary  
Let us consider a dataset of M labelled samples where each sample belongs either 

to the class P or N then 
 ,M P N   (1) 

where P  is number of positive samples, and N  is number of negative samples in the 
dataset. Supposing the confusion matrix stated in Tab. 1, the numbers of samples 
belonging to the classes can be expressed as 
 , ,P TP FN N TN FP     (2) 

which allow us to express (1) as 
 .M TP FN TN FP     (3) 

Let us express the numbers of samples in the classes as 
 , ,P NP M N M    (4) 

where P  is the proportion of the positive samples in the dataset, and N  is the 
proportion of the negative samples in the dataset. Furthermore, it holds that 

 , 0,1P N    and 1P N   . 

3.2 Analysis  
Let us consider the objective of a binary classifier now. As was already stated, the 

aim of a binary classifier is to correctly assign a sample to one of the two classes, P or 
N, if possible. A well working classifier will correctly assign all the samples, i.e. 
TP P , TN N , 0FP  , and 0FN  . A classifier with a worse performance 
will correctly classify a smaller proportion of the samples. Thus, let us express the 
number of correctly classified samples as 
 , ,TP TNTP P TN N    (5) 

where TP  is the proportion of correctly classified samples from all positive samples in 
the dataset, TN  is the proportion of correctly classified samples from all negative 
samples in the dataset, and  , 0,1TP TN   . 

On the basis of formulae (2) and (5), the numbers of miss-classified samples can be 
expressed as 

    1 , 1 .TP TNFN P FP N      (6) 

It is obvious that performance of a binary classifier can be positively determined using 
just two quantities, TP and TN . 

Let us express all the performance measures using the quantities TP  and TN . The 
modification will be demonstrated on the accuracy. The accuracy is given by 



 

 

 acc .
TP TN

TP FN TN FP



  

 (7) 

Using formulae (3) and (5), the original formulation (7) can be expressed as 

 acc .TP TNP N
M

 
  (8) 

This formula can be further modified using (4), i.e. 

 acc .TP P TN N
TP P TN N

M M
M

           (9) 

Formula (9) clearly shows that the accuracy (7) does not depend only on the 
performance of a classifier ( TP and TN ); however, composition of dataset is also 
reflected in this measure ( P and N ). The same procedure, which has been used for 
the accuracy, can be applied on other measures. The most common measures are 
summarized in Tab. 2 (AUC is expressed for a threshold value 0.5). Acronyms of the 
measures are stated in the first column. Their usual expressions are listed in the second 
one. The last column contains their modified expressions. It is apparent from the 
modified expressions that accuracy, error rate, precision and Fscore are biased by the 
class distribution in datasets while the other measures are invariant. 

4 Class balanced performance measures 
The previous analysis has clearly indicated the biased measures in Tab. 2, as well 

as the underlying problem. Simultaneously, a way of dealing with the problem has 
been outlined by the analysis. Specifically, the biased measures can be extended by 
class weights. Once the weights are properly set, measures resistant to the class 
distribution in a dataset are acquired. Since distributions of classes in datasets are 
known within the evaluation process, the weights can be set according to the 
proportion of the classes P  and N . This idea was used when developing the class 
balanced measures. For simplicity, let us call them balanced measures, but do not 
confuse them with already published metrics such as a balanced accuracy (Brodersen 
et al., 2010) or a balanced error rate (Chi-Yuan, 2011). 

In the case of the balanced measures, the setting of the weights was based on 
common practice. As already mentioned, it is usual to report performance of classifiers 
on datasets with nearly symmetrical prior probabilities of classes, i.e. magnitude of the 
classes in the biased measures is nearly uniform. Thus, the magnitude of classes in the 
balanced measures should be also uniform in order to get comparable results. It means 
that the basic quantities related to the positive class, TP  and FN , have to be 
multiplied by the proportion of the negative class in the dataset N ; and similarly, the 
basic quantities related to the negative class, TN  and FP , have to be multiplied by 
the proportion of the positive class P . Following this idea, a class balanced 
complement can be developed for each biased measure. 



 

 

Tab. 2: The most popular performance measures in the binary classification 

Acronym Standard expression Modified expression 

acc 
TP TN

TP FN TN FP


  
 TP P TN N     

er 
FP FN

TP FN TN FP


  
    1 1TP P TN N       

pr 
TP

TP FP
  1

TP P

TP P TN N

 
    

 

re 
TP

TP FN
 TP  

sp 
TN

TN FP
 TN  

fnr 
FN

TP FN
 1 TP  

fpr 
FP

TN FP
 1 TN  

Fscore 
 

 
2

2 2

1

1

TP

TP FN FP


 



  
 

 
     

2

2 2

1

1 1 1
TP P

TP TP P TN N

  

      



      
 

Gmean 
TP TN

TP FN TN FP


 
 TP TN   

AUC 
1
2

TP TN
TP FN TN FP

 
    

  1
2 TP TN   

Source: Authors 

In such a way, balanced accuracy (accB), balanced error rate (erB), balanced 
precision (prB), and balanced harmonic mean of precision and recall (FscoreB) have 
been established. All the class balanced complements of the biased measures in Tab. 2 
are summarized in Tab. 3. Their acronyms are stated in the first column. Their usual 
expressions are listed in the second one while the modified expressions of these 
measures are stated in the last column. 
Tab. 3: The class balanced performance measures 
Acronym Standard expression Modified expression 

accB    
N P

N P

TP TN
TP FN TN FP

 
 


  

  1
2 TP TN   

erB    
P N

N P

FP FN
TP FN TN FP

 
 


  

    1
2 1 1TP TN        

prB 
N

N P

TP
TP FP


 
 

1
TP

TP TN


  

 

FscoreB 
 

 
2

2 2

1

1
N

N P

TP

TP FN FP

 

   



    

 
     

2

2 2

1

1 1 1
TP

TP TP TN

 
    



    
 

Source: Authors 



 

 

As follows from the previous text, the class balanced measures should provide 
results corresponding to evaluation on balanced datasets. Fulfilment of this 
requirement can be simply verified on benchmark datasets or analytically. The 
analytical approach takes into account the uniform distribution of classes in balanced 
datasets ( 0.5P N   ). Inserting these values into the modified expressions of 
original measures, leads to the class balanced measures which confirms the above 
stated requirement (third columns of Tab. 2 and Tab. 3). 

The verification using benchmark datasets consists of a systematic application of 
original and balanced measures in different scenarios, followed by a comparison of the 
results. The results obtained using the original measures on a balanced dataset are 
taken as the reference values. However, this approach leads to a huge amount of data 
which could not be summarized in this article due to limited space.  

In order to offer an alternative verification approach, we developed a specialized 
visualization method. It is based on the idea to use gradients of a performance measure 
m in order to show its dependence on the real performance of a classifier ( TP , TN ) 
and the proportion of samples in datasets. Just as a reminder, the composition of a 
dataset can be expressed either as the proportion of positive P  or negative N  
samples, where 1P N   . In our approach, the gradient is defined as 

 , ,
TN TP P

m m mm
  

         
. (9) 

The gradients are then represented as a 3D graph, where TN , TP  and P  are shown 
on x, y and z axes, respectively. For each explored scenario, the gradient m  is 
symbolized using an arrow. While size of the gradient m  determines length of the 
arrow, orientation of the arrow reflects degree of influence of each independent 
variable. Thus, a non-zero angle, determined by the arrow and its base, indicates 
influence of the composition on the measure. The base of the arrow is a plane parallel 
with x and y axes, passing through the z axis at the level given by P . The size of the 
angle is proportional to the degree of influence of the proportion of positive samples 
on the measure. 

Application of this method on the original and balanced accuracy is shown in 
Fig. 1. Evaluation of the measure for  , , 0.00,0.25,0.50,0.75,1.00TN TP P     was 
carried out for the purpose of this article. While the original accuracy (acc) is strongly 
influenced by the proportion of positive samples P  (non-zero angles for a majority of 
the expected settings in Fig. 1 (a)), the balanced accuracy (accB) is resistant to the 
composition (zero angles for all the settings in Fig. 1 (b)). Similar results were 
achieved for all other biased measures and their balanced counterparts. 

From this perspective, the class balanced measures seem to be the perfect solution. 
Unfortunately, it is not true. A miss-classified sample, which belongs to a minority 
class, has a different impact on the final value of a balanced measure, comparing with 
a miss-classified sample which belongs to a majority class. Naturally, the same holds 
for correctly classified samples. Impact of this issue will be discussed in the following 
section. 



 

 

Fig. 1: Visualization of a dependence of the original accuracy acc (a), and the 
balanced accuracy accB (b) on the performance of a classifier and on the 

composition of a dataset. Non-zero angles, determined by the arrows and their bases 
in the left panel, indicate the influence of the dataset composition on acc 

 P  P

 
Source: Authors 

5 Discussion 
The question of reporting performance of binary classifiers has been opened in the 

context of the class imbalance problem. As follows from the above stated facts, 
realization of an expressive evaluation of a binary classifier on a highly imbalanced 
dataset is not a simple task. Let us briefly summarize the nature of this issue. 

Outcomes of an evaluation process are required to be comparable with results 
published by other researchers. In order to preserve the comparability, the evaluation 
should be accomplished using widely accepted performance measures. Nevertheless, 
some of the widely used measures are biased by class distribution in datasets. Once 
evaluation on imbalanced dataset has to be done, only unbiased measures should be 
used in order to obtain meaningful results. This poses the question of, which measures 
should be chosen so that a desired information value would be kept and the 
comparability requirement would be met? 

In our opinion, requirements on eligible measures stated in the question, i.e. 
obtaining of the desired information value while keeping the comparability, are 
equally important. Of course, all three requirements on a successful measure, which 
were stated in the introduction, should be met in order to obtain eligible measures. As 
already said, eligible measures should be also unbiased. Keeping in mind all these 
requests, use of the class balanced performance measures seems to be the appropriate 
solution. 

The class balanced measures, which are basically extensions of the widely used 
biased measures, are resistant to class distributions in datasets, i.e. they are unbiased. 
They are aimed to provide comparable results on datasets with an arbitrary distribution 
of classes. The balanced measures capture the same aspects of performance as their 



 

 

original counterparts, i.e. meaning of the balanced measures is easy to understand for 
the majority of researchers. 

As follows from the essence of the balanced measures, their outcomes should fully 
correspond to results, which would be obtained by evaluation of classifiers on 
balanced datasets, using appropriate original biased measures. The balanced measures 
emulate their originals, where the originals coherently capture aspects of performance 
of interest. From this perspective, the balanced measures coherently capture the aspect 
of performance of interest as well. On the other hand, a miss-classified sample 
belonging to a minority class has a different impact on a balanced measure compared 
to a miss-classified sample which belongs to a majority class. In this light, fulfilment 
of the first requirement of a successful measure (see introduction) is disputable. 

Despite this drawback, the information value mediated by the class balanced 
measures is very high, as can be shown in real world data. For example, object 
detection in large-scale images using the sliding window, inherently leads to highly 
imbalanced datasets. This issue was demonstrated on a grape detector which was 
evaluated on real-life images (Škrabánek et al., 2016) where proportions of classes in 
datasets generated by the sliding window were 0.001P   and .999.0N  

Let us compare performance of the grape detector evaluated on these datasets using 
the balanced (Škrabánek et al., 2016) and imbalanced measures (Škrabánek et al., 
2015). The average accuracy of the detector was 0.963 but its average balanced 
accuracy was 0.936. Its average precision was 0.027 but its average balanced precision 
was 0.966. For comparison, its average accuracy by a 10-fold cross-validation on 
balanced datasets was 0.982 and its average precision was 0.980 (Škrabánek et al., 
2015). It is evident that the balanced measures provide meaningful results with a high 
information value, even on highly imbalanced datasets. Thus, at least, the class 
balanced measures allow a rough comparison with other results. 

Moreover, there are two solid facts which strongly support using of the class 
balanced measures by evaluation of classifiers on imbalanced data. First, the meaning 
of these measures is evident to a broad community of researchers. Second, the 
balanced measures can be safely used both on balanced and on imbalanced datasets. In 
short, the class balanced measures are universal, intuitive, and simple to report. Thus, 
the second and the third requirement on a successful measure are fully met. 
Considering all these facts, the class balanced measures have a high probability of the 
broad acceptance by researchers across the majority of application areas. 

The above stated facts lead us to a following conclusion: ''When reporting 
performance of binary classifiers, the balanced measures should be used primarily on 
balanced as well as on imbalanced datasets.'' A merit of the class balanced measures is 
the fact that the selection of appropriate measures does not differ from the current 
practice. Moreover, once the balanced measures are applied on datasets with a 
balanced distribution of classes, they provide identical results to the original biased 
measures. Thus, the balanced measures can be also safely used when training or tuning 
classifiers on balanced datasets which we also positively recommend as the best 
practice. This suggestion is aimed to keep uniformity and clarity within every single 
report, paper or article. 



 

 

6 Conclusion 
In this article, the question of reporting performance of binary classifiers has been 

discussed. This issue is fundamental in many areas of economics; especially when 
machine learning or data mining methods are applied on datasets with imbalance 
distribution of classes. However, the discussed topic is not limited on the economics. It 
is relevant in many other fields such as medicine or computer vision. 

In order to solve the discussed issue, the class balanced measures were suggested as 
a new standard while reporting performance of binary classifiers. The class balanced 
measures are basically extensions of the widely used biased measures. They capture 
the same aspects of performance as their counterparts. Results provided by these 
measures on balanced datasets do not differ from the original biased measures. The 
class balanced measures provide also meaningful results with high information value 
on imbalanced datasets. Since the meaning of these measures does not differ from the 
original ones, their acceptation by a broad professional community is expected. 

As the next step, generalization of the introduced concept for multiclass 
classification problem is considered. However, less emphasis should not be placed on 
the presented class balanced measures. In the work (Brodersen et al., 2010), posterior 
distribution of a measure within the cross-validation has been considered. The way of 
looking at measures provided by Brodersen et al. might be applied to all the class 
balanced measures in order to obtain more detail information about their features. 
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