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Abstract
Detection of grapes in real-life images is a serious task solved by researchers dealing with precision viticulture.
In the case of white wine varieties, grape detectors based on SVMs classifiers, in combination with a HOG
descriptor, have proven to be very efficient. Simplified versions of the detectors seem to be the best solution
for practical applications. They offer the best known performance vs. time-complexity ratio. As our research
showed, a conversion of RGB images to grayscale format, which is implemented at an image pre-processing
level, is ideal means for further improvement of performance of the detectors. In order to enhance the ratio,
we explored relevance of the conversion in a context of a detector potential sensitivity to a rotation of berries.
For this purpose, we proposed a modification of the conversion, and we designed an appropriate method for a
tuning of such modified detectors. To evaluate the effect of the new parameter space on their performance, we
developed a specialized visualization method. In order to provide accurate results, we formed new datasets both
for tuning and evaluation of the detectors. Our effort resulted in a robust grape detector which is less sensitive to
image distortion.
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1. Introduction
Detection of grapes in real-life images is a serious task solved
by many researchers dealing with precision viticulture [1].
Grape detectors are employed in various applications, e.g. in
autonomous vineyard sprayers, harvesters or in the process
of yield estimation [2, 3, 4, 5]. Various types of image pro-
cessing, feature extraction and classification algorithms can
be employed when detecting berries or bunches of grapes in
RGB images.

A bunch detector designed by Reis at el. [6] employs
colour mapping, morphological dilation, and stem detection.
It showed correct white wine bunch classification at 90.53 %
and red wine at 97.14 %, demonstrating an increase in com-
plexity of detection depending on grape colour. Thus, let us
focus only on solutions aimed at white variety detection.

A detector introduced by Berenstein et al. [2] was based
on the decision tree algorithm and was applicable both for the
bunch and the berry detection. Its detection rate of bunches
was 90.45 %, and the detection rate of single grapes was
90.10 %. An exceptional single grape detector was developed
by Nuske at el. [3]. It showed overall precision at 98.00 %
but recall was lower at 63.70 %. Their detector utilized ra-
dial symmetry transformation, Gabor filters, and a k-nearest
neighbours classifier.
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A comparable method [7], aimed at detection of white
wine varieties, considered support vector machines (SVMs)
classifiers in combination with histograms of oriented gradi-
ents (HOG). Specifically, its average accuracy by a 10-fold
cross-validation (CV) was 98.23 % for a linear kernel and
98.96 % for a radial basis function (RBF) kernel. Similar
results were achieved in their evaluation on real-life images
[8].

While excellent, these detectors are computationally in-
tensive to an extent that makes them impractical in viticulture
applications. Modification of an image pre-processing (IP),
where an input RGB image is first converted to a grayscale
format and then adjusted with a linear contrast normalization,
can be used to reduce the time complexity of the original solu-
tions [9]. The impact of the normalization step was shown to
be negligible in the grape detectors [9, 8], but appropriateness
of the grayscale conversion remains to be tested.

The evaluation of the detectors requires sets of labelled
object images. These sets might significantly influence evalu-
ation results. Škrabánek et al. [7, 9] discovered inconsistency
in the performance of the detectors that depended on the eval-
uation set. Although the detectors have a high score in the
10-fold CV and an evaluation on real-life images, they do not
achieve such results on test sets [7]. The test sets contained
distorted positive samples, where 75 % of the positive samples
in each test set were artificial samples created by a rotation of
original samples. The detectors were tested on two categories
of test sets. The poorer grape detection results were present
for both categories. For example, the average accuracy of the
original detector with the linear kernel was as low as 87.85 %
in a test set [7].

Here, we address both the relevance of the grayscale con-
version and a potential sensitivity of the detectors to the image
rotation. We test a modification of the conversion and propose
a parameter tuning method, designed for such modified grape
detectors. To evaluate the effect of the new parameter space
on their performance, we developed a specialized method for
a visualization of the evaluation results. We applied the mod-
ified conversion and the tuning method into grape detectors
developed by Škrabánek et al. [9], and we evaluated perfor-
mance of these modified versions. In order to provide accurate
results, we formed new datasets both for tuning and evaluation
of the detectors. Our improvements resulted in a robust grape
detector which is less sensitive to image distortion.

2. Materials and Methods
2.1 Original Work on Grape Detectors
The presented study evaluates and modifies previous research
published in [7, 9]. Herein, we provide a brief summary of
the published grapes detectors and the test sets.

2.1.1 Objective of the Detectors
The grape detectors were aimed at the recognition of grapes
of white varieties in object images. RGB object images I of
dimensions 40× 40 px (pixel) were considered in [7, 9, 8].

The object images were square viewports of source images of
a resolution 1936×1288 px, 24 bit.

The detectors distinguished between two classes y: ’berry’
and ’not berry’. The class ’berry’ was called ’positive’ and
the class ’not berry’ was called ’negative’. Object images
belonging to the class ’positive’ contained berries of the circle
shape of a diameter ranging between 30 and 40 px. Moreover,
the middle of the berries were required to be placed in the
middle of the object images with a tolerance ±1 px. Object
images, which did not satisfy this condition, belonged to the
class ’negative’.

2.1.2 Structure of the Detectors
In computer vision, detection of objects in images usually
consists of four successive steps. The first step is acquiring
an object image I from a large real-life image; the second
step is the IP resulting in a modified image Y ; the third one
is extraction of features; and the final step is classification of
the object image using a feature vector x. However, the grape
detectors introduced in [7, 9] consist specifically of three
parts only; from the IP, a features descriptor and a classifier.
Although the detectors differ in structure of the IP, used feature
descriptors, and settings of classifiers, they have the same
arrangement of a vision pipeline (Fig. 1). Parts of the detectors
are described in the context of our previous works in further
details.

Image
pre-processing

I Y Features 
extraction

x
Classifier

y

'berry'
1 0 1 0 1 1 0
1 1 0 0 0 1 1
0 1 0 1 0 0 ...

Figure 1. Vision pipeline of the grape detectors.

Image Pre-processing IPs of the original detectors, labelled
as O [7], consist of two steps; the conversion of input RGB
images to grayscale format followed by a linear contrast nor-
malization on the range [0,1]. Simplified versions, which
were introduced in [9], skip either the contrast normalization
(simplified version 1 or S1) or both operations (simplified
version 2 or S2). In O and S2, the conversion is carried out
according to ITU-R recommendation BT.601 [10]. This con-
version belongs to techniques based on weighted means of
all three colour channels [11]. It means that the conversion
of the input RGB image I from the RGB model to the gray-
scale format is realized by eliminating the hue and saturation
information, while retaining the luminance.

Features Extraction Two types of features, a vector of nor-
malized pixel intensities and HOG, were considered in [7];
however, only the HOG features have proven to be convenient
for the detection of grapes of white varieties [7, 9, 8]. Thus,
only the detectors based on the HOG features will be consid-
ered further. It means that the feature vectors x are extracted
from Y using the HOG descriptor [12]. A standard setting of
the descriptor has demonstrated to be sufficient. Specifically,
a linear gradient voting into 9 bins in 0◦−180◦; cells of size
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6×6 px; blocks of 2×2 cells; and 1 overlapping cell between
adjacent blocks in both directions were used in [7, 9, 8].

Classifier The aim of classifiers in the grape detectors is
a judging the classes y of the object images I using feature
vectors x. SVM classifiers [13] with the linear and the RBF
kernel functions were used in [7, 9]. Regardless of the used
kernel function, the performance of a SVM classifier is in-
fluenced by a regularization constant C. Performance of a
classifier with the RBF kernel is further influenced by a kernel
width σ . A grid search algorithm [14] combined with the 10-
fold CV was used to find settings of these parameters giving
the maximal recognition accuracy [7].

2.1.3 Training and Evaluation of the Detectors
Five training sets were introduced in [7]. The i-th training
set was denoted as T-i, where i ∈ X , and X = {1,2, . . . ,5}.
Each training set consisted of 288 unique ’positive’ and 288
unique ’negative’ samples. The training set T-3 was used for
the training of the detectors [7, 9, 8].

Three kinds of evaluation methods were considered by
the evaluation of the original detectors O [7, 8]: the 10-fold
CV, an evaluation on test sets, and an evaluation on cut-outs
of one vineyard photo. The simplified detectors S1 and S2
were evaluated using the test sets [9] and the cut-outs [8]. In
all cases, three performance measures m were used for the
evaluation:

accuracy =
|TP|+ |TN|

|TP|+ |FN|+ |TN|+ |FP|
·100, (1a)

precision =
|TP|

|TP|+ |FP|
, (1b)

recall =
|TP|

|TP|+ |FN|
, (1c)

where |TP| is the number of correctly classified ’positive’ sam-
ples, |FN| is the number of misclassified ’positive’ samples,
|FP| is the number of misclassified ’negative’ samples, and
|TN| is the number of correctly classified ’negative’ samples
[15]. Naturally, for the cut-outs, unbiased variants of the
measures have been used [8].

While just the training sets were needed for the 10-fold
CV, appropriate datasets must be created for the remaining two
evaluation methods. Creation of these datasets was sufficiently
described in [7]; however, datasets used for the evaluation on
test sets should be detailed here. For this purpose, two types
of datasets were created: an environment type E, and a grape
type G. Five sets of each type were formed [7]. The i-th test
set of the type E was denoted as E-i and the i-th test set of the
type G as G-i, where i ∈ X .

Each test set consisted of 200 ’positive’ and 200 ’negative’
samples. The sets were based on one vineyard row photo
which was not used for creation of the training sets. To form a

single test set, 50 unique ’positive’ and 200 unique ’negative’
samples were used. Each test set was further extended by
artificial ’positive’ samples [16]. The ’positive’ samples were
created by turning of the images through an angle ϕ , where
ϕ ∈ {0,π/2,π,3π/2}.

The difference between these two types of test sets con-
sisted in the selection of the ’negative’ samples. The ’nega-
tive’ samples in G were composed solely of incomplete grape
berries of a diameter ranging between 30 and 40 px, while
the ’negative’ samples in E were based on the environment
only, and they did not capture even the smallest piece of the
targeted berry. Examples of ’positive’ samples as well as of
both types of ’negative’ samples are shown in Fig. 2.

b)

a)

c)
Figure 2. Examples of object images of the class: a)
’positive’ , b) ’negative’ - grape type, c) ’negative’ -
environment type.

2.2 Robust Grape Detector
While the original, as well as the simplified, grape detectors
showed excellent performance by the 10-fold CV [7] and by
the evaluation on the cut-outs [8], considerably worse results
were obtained by their evaluation on the test sets [7, 9]. For
example, the original version of the detector with the linear
kernel reached the following average score by the 10-fold CV:
precision = 0.980, accuracy = 98.23 %, and recall = 0.987.
The following average results were obtained for the same
detector on the test sets of the type E: precision = 0.977,
accuracy = 87.85 %, and recall = 0.776. Similar results were
obtained on both types of test sets for all versions of detectors.

The drop in accuracy and recall might be caused by dif-
ferent reasons. Generally, the most common source of a
discrepancy in evaluation results is an inadequacy of datasets
used by the evaluation. In the case of the grape detectors, a
distortion of positive samples caused by the rotation might be
considered as well. Indeed, the HOG features are not rotation
invariant [12]. Since a potential sensitivity of the detectors on
the distortion caused by the rotation of images is undesirable,
we started a research aimed on enhancement of the detector’s
robustness.

Two principally different means might help to improve
the detector’s performance in the presence of a distortion:
either a more appropriate training set could be used for the
training, or a modification in the vision pipeline could be
done. In our research, we focused on the modification of the
pipeline (subsubsection 2.2.1). Unfortunately, three additional
tenable parameters were introduced by the presented modi-
fication, which considerably complicated the search for the
optimal setting of the modified detector. In order to face this
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disadvantage, we developed a specialized tuning methodol-
ogy (subsubsection 2.2.3). The methodology was based on
a visualization method which we designed for this purpose
(subsubsection 2.2.2).

2.2.1 Modification of the Detector
Although the selection of a good feature vector is widely rec-
ognized to be fundamental when designing image recognition
systems, the IP may also significantly influence the perfor-
mance of a final solution. Thus, an intelligent use of the IP
can provide benefits and solve problems that ultimately lead
to better local and global feature detection [17].

IPs of the original grape detectors consisted of two opera-
tions: the conversion of RGB images to the grayscale format,
and the linear contrast normalization. Our later research has
positively shown that the skipping of the contrast normaliza-
tion does not influence the performance of the detectors at
all [9]. Nonetheless, the relevance of the conversion in the
detectors was not disproved.

Importance of the conversion of RGB images to the gray-
scale format, in connection with the image recognition sys-
tems, was studied for example by Kanan and Cottrell [11].
They have shown that a method used by the conversion of
colour images to the grayscale format may significantly in-
fluence performance of the image recognition system, even
when using robust descriptors. Further, they have pointed out
the fact, that different tasks involve different conversion meth-
ods. For object recognition tasks, they recommend techniques
based on weighted means of the red, green, and blue image
channels.

Considering their outcomes, we proposed to use a general
formula for the conversion based on the weighted means. The
main motivation for its use is the fact, that this formula allows
better control of the conversion, which consequently may
allow us to improve the performance of the detectors. The
general formula can be written as

I∗ = wRIR +wGIG +wBIB, (2)

where IR, IG and IB are intensity images of the red, green
and blue components of the RGB image I; and wR, wG, and
wB are weights of the colour components in the resulting
grayscale image I∗. It holds that wR,wG,wB ∈ [0,1], and
wR +wG +wB = 1. Since the conversion (2) is the single
operation performed within IPs of the modified detectors, it
holds that Y = I∗.

We modified the simplified version S1 of the grape detec-
tor using the general formula (2), i.e. the standard conversion
was replaced by this formula. The rest of the vision pipeline
was not changed, i.e. the new detector consisted of the HOG
descriptor and the SVM classifier. We named the new detector
as a robust grape detector, or simply R.

Considering the essence of the proposed modification, it
is apparent that the modification does not increase the com-
putational complexity of the detector. Inherently, it may not
cause a worsening of its performance. Indeed, the setting of

the weighting coefficients according to the ITU-R recommen-
dation BT.601 is just one of an infinite number of possible
settings.

2.2.2 Performance Visualization for Better Understanding
of Tuning Parameter Relevance

While searching for the optimal setting of an image recogni-
tion system, an appropriate variant of the grid search algorithm
is typically used. For just one or two tuneable parameters,
meaningfulness of evaluation results can be assessed on the
basis of the raw data directly by a specialist. However, the
assessment is becoming challenging when increasing the num-
ber of tuneable parameters.

Considering the parameters of the HOG descriptor to be
non-tuneable, the original and the simplified versions of the
detectors have only one or two tuneable parameters (depend-
ing on the used kernel function). The fixation of the HOG
descriptor setting has its origin in practical reasons. The
setting of the HOG descriptor, which was summarized in
subsubsection 2.1.2, is appropriate in terms of exactitude vs.
computational complexity. Thus, this fixed setting is used for
the robust detectors as well.

The original tuneable parameters, C and σ , were extended
by three additional parameters, wR, wG, and wB, in the case of
the robust grape detectors. These parameters were introduced
by the formula (2). Thus, the tuning of a robust grape detector
setting using a grid search algorithm, results in a large amount
of data. An analysis of such quantities of data in the raw
numeric form is really not convenient for humans. In order
to facilitate the analysis, we suggested a ternary diagram for
a visualization of the data. Specifically, we used the diagram
to show a prospective influence of the weighting coefficients,
wR, wG, and wB, on the performance of an overall solution for
a fixed setting of the remaining tuneable parameters.

The ternary diagram is a graph which consists of an equi-
lateral triangle in which a given plotted point represents the
relative proportions (a,b,c) of three end-members (A, B and
C), usually expressed as percentages (do not confuse the end-
member C with the regularization constant C). Moreover,
the sum of the relative proportions is equal to a given value,
e.g. for percentages, it holds that a+ b+ c = 100%. The
axis related to the member A is the left arm of the triangle.
The relative proportion of A, a, is plotted on the axis where
a increases downwards. The same principle is used for the
remaining two axes where the bottom axis is related to the
component B and the right one to the component C. The rela-
tive proportion of B increases in the right direction, and the
relative proportion of C upwards. A dependent variable can
be represented in different ways, e.g. using contour plot or
shaded surface. For more information, see [18].

In our case, the three end-members, A, B and C, are the
intensity images of the colours, IR, IG and IB, respectively.
The relative proportions, a,b and c, are the weights, wR,wG
and wB, where wR,wG,wB ∈ [0,1]. Moreover, the weights are
bounded by the condition wR +wG +wB = 1. The ternary dia-
gram is aimed to be used as a supporting tool by the evaluation
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of the grape detectors. Thus, a performance measure m is the
dependent variable to be displayed. Considering our previous
experience, we suggested to use the shaded surface for the
visualization of the results. This type of diagram gives the bet-
ter idea about the influence of the weights on the performance
measure.

Let us denote a setting of the weighting coefficients w
as an ordered triple of the weights w, i.e. w = (wR,wG,wB).
Further, let us form a finite set W of settings w for the purpose
of the graph construction, and let us call the set grid. The grid
should uniformly cover the surface bounded by the triangle.
It means that a step ∆w, of a fixed size, has to be used by
forming the grid. Let us express the step as ∆w = 1

p , where
p > 0, p ∈ N. Thus, the weighting coefficients w can take any
value from {0,∆w,2∆w, . . . ,1}; however, a combination of
the coefficients in (wR,wG,wB) is bounded by the condition
wR +wG +wB = 1. It means that the grid W is a set of all
admissible settings w.

In order to construct the ternary diagram, evaluation of
a detector using a measure m has to be achieved for ∀w ∈
W . Naturally, the classifier has to be trained for each of
these settings separately. Settings of the classifier (C for
linear kernel and C,σ for RBF kernel) must not be changed
within the training-evaluation process. Once the training-
evaluation process is performed for all the admissible settings
w, construction of one diagram can be executed, where the
diagram shows dependence of the used performance measure
m on the weights wR,wG, and wB for one particular setting
of C or C,σ . An example of the diagram is shown in Fig. 3
where the recall of a grape detector is displayed.
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Figure 3. Demonstration of working with the ternary
diagram.

Fig. 3 can be used also for explanation of how to work
with the diagram. Let us suppose that the recall for wR = 0.1,
wG = 0.2 and wB = 0.7 is required to be determined. The
reading of the recall value can be done using auxiliary lines
which are plotted using dashed lines in Fig. 3. Each line is
parallel with one of the sides of the triangle. The lines are
named with respect to referred components, i.e. ’IR line’ is
related to the intensity images of the red colour IR, ’IG line’
to the intensity images of the green colour IG, and ’IB line’ to

the intensity images of the blue colour IB.
Positions of the lines are given by the weights w. In this

example, ’IR line’ passes the left axis at the point 0.1, ’IG
line’ passes the bottom axis at the point 0.2, and ’IB line’
passes the right axis at the point 0.7. The intersection of
the lines positively determines the recall. The numeric value
can be estimated using the colour bar. In this example, the
recall is approximately 0.78. It might be noted here that only
two auxiliary lines are necessary for reading of the dependent
variable. Indeed, the proportion of a third component is always
positively determined by the constraint of their sum, in this
case by wR +wG +wB = 1.

2.2.3 Tuning Methodology
The goal of our research was the development of a grape
detector which would be invariant to the distortion caused by
the rotation. One of the key steps within the development
process is finding the setting of all tuneable parameters giving
the best performance according to a criterion. The search for
the optimal setting is usually executed using a variant of the
grid search algorithm [14].

The grid search algorithms ensure a systematic evaluation
of an image recognition system performance. Usually, the grid
search is combined with the CV. In such a case, the evaluated
system is trained on a part of a dataset and evaluated on the
rest of the dataset. The training is carried out for various
settings of all tuneable parameters. The settings might be
assigned according to a rule or directly defined by an expert.
The setting giving the best score is considered to be optimal.
In order to obtain more accurate results, the search can be
performed repeatedly. The search is then carried out with a
finer resolution in a scaled down area. An area promising best
results is selected for the finer search.

In order to develop a methodology aimed at tuning of
the robust detectors, we adopted the basic principles of the
grid search algorithms. Specifically, the training-evaluation
process is carried out for various settings of all tuneable param-
eters within the search process. However, our methodology
requires involvement of a computer vision specialist. Fur-
ther, the evaluation of the image recognition system should
be performed on a dataset affected by the target distortion.
For that reason, the commonly used CV was replaced by the
evaluation of the system on a specialized dataset.

In order to ensure flexibility of the method, we prepared
the methodology for a multiple criteria usage. The proposed
methodology allows combination of several performance mea-
sures when searching for the optimal setting. In the case of
the multiple criteria, a priority of the performance measures
has to be determined in advance. For the detector with the
RBF kernel, the methodology consists of following steps:

1. Select performance measures and give them priorities.
In such a way, a finite set M of measures m is created
where each measure is paired with a priority.

2. Define admissible settings of all tuneable parameters
XC,Xσ ,W , where XC is a finite set of all admissible



Robust Grape Detector Based on SVMs and HOG Features — 6/13

settings of C, and Xσ is a finite set of all admissible
settings of σ . Such a way, a parameter space Θ of
features θ is formed, where θ ∈Θ, and θ = (C,σ ,w).

3. Perform the training-evaluation process ∀θ ∈Θ using
∀m ∈M.

4. Display the obtained results using the diagram. Such a
way, |M|× |XC|× |Xσ | graphs are obtained, where | • |
denotes a cardinality of a set.

5. Manually evaluate the obtained results using the graphs.
Identify combinations of C and σ leading to senseless
results. Eliminate all settings θ containing the offend-
ing combinations of C and σ from the further process-
ing, i.e. a new parameter space Θ̂ is formed where
Θ̂⊂Θ.

6. For each performance measure m ∈M, find the setting
θ ∗m giving the best score according to

θ
∗
m = arg max

∀θ∈Θ̂

m(θ). (3)

7. Determine a globally optimal setting θ ∗ on the basis
of all θ ∗m. Within this step, the priority of the measures
must be taken into account; however, the functional
dependences shown in the appropriate graphs must be
considered as well.

This methodology can be also applied on the detector with
the linear kernel. Naturally, the variable σ should be ignored
in this case.

2.3 Design of Evaluation Experiments
In the experimental part, we evaluated relevance of the gray-
scale conversion and the potential sensitivity of the detectors
to the image rotation. For this purpose, new statistically rele-
vant datasets were created.

2.3.1 Assessment of Conversion Importance
The assessment of the conversion relevance was one of the
main goals of the presented work. Two versions of the conver-
sion were considered in the grape detectors. While the grape
detectors S1 employ the standard conversion according to the
ITU-R recommendation BT.601, the robust detectors R are
based on the generalized conversion (2). The detectors S2 do
not perform any conversion within the IP.

Performances of all three variants of the detectors have to
be confronted concerning the assessment of the conversion
relevance. In order to keep comparability of the results, the
detectors should be tuned the same way. Thus, when tuning
S1 and S2, the methodology presented in subsubsection 2.2.3
should be used in appropriately modified form. It means that
steps 4 and 5 have to be left out when searching for their
settings.

2.3.2 Dataset for Tuning
The proposed tuning methodology requires one training and
one evaluation set. In order to keep continuity with our pre-
vious research, the training set T-3 was used in the training
phase. Within the evaluation phase, a specialized (tuning)
dataset should be used. The tuning set should be large enough
and it should be affected by the target distortion of the ’posi-
tive’ samples. Further, both types of the ’negative’ samples,
E and G (subsubsection 2.1.3), should be equally represented
in the set. Searching for the optimal setting on such datasets
may guarantee finding a setting which would be appropriate
to given requirements on the robust detector.

For this purpose, a tuning set on ten photos was created.
These photos were captured under the condition specified in
[7]. They were captured at six different locations. None of
these photos were used while forming the training set. The
tuning set consisted of labelled RGB object images of size
40×40 px. The labelled object images were created from the
photos using an editor [19]. To create the dataset, 1000 unique
’positive’ and 4000 unique ’negative’ samples were gathered.
The set was extended using artificial ’positive’ samples created
by turning the images through the angle ϕ , i.e. it consists of
4000 ’positive’ and 4000 ’negative’ samples.

2.3.3 Datasets for Evaluation
In subsubsection 2.1.3, the evaluation test sets, E and G, were
mentioned. Each of these sets consisted of only 400 samples,
which seems to be insufficient for a credible assessment of
the meaning of the conversion. In order to get meaningful
results, we formed new expanded test sets. These sets were
created in the same spirit as the original test sets. Continuity
of the marking was also maintained; i.e. expanded test sets
of the environment type were labelled as EX, and expanded
test sets of the grape type as GX. Two expanded test sets of
each type were formed. In addition, a new type of test set was
introduced. This set was labelled as expanded standard test
set or SX. The set was not affected by the distortion.

All the expanded test sets comprised of labelled RGB
object images of the size 40× 40 px. The labelled object
images were created from vineyard row photos using the
editor [19]. The sets EX and GX were based on a collection
of ten unique vineyard row photos. Ten different photos were
used for SX creation. The photos did not match with the
photos used when creating the training and the tuning set.
The photos were captured at six different locations under the
conditions specified in [7].

An expanded test set, either EX or GX, consisted of 500
unique ’positive’ and 2000 unique ’negative’ samples. The
sets were extended using artificial ’positive’ samples created
by turning the images through the angle ϕ , i.e. they consisted
of 2000 ’positive’ and 2000 ’negative’ samples. The selection
of the ’positive’ and of the ’negative’ samples followed the
criteria stated in subsubsection 2.1.3. Sets EX-i and GX-i with
the same index i shared the same collection of ’positive’ sam-
ples. The standard set SX consisted of 2000 unique ’positive’
and 2000 unique ’negative’ samples.
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2.3.4 Inquire into the Sensitivity to the Rotation
The potential sensitivity of the detectors to the image rotation
was the second issue to be investigated. Suspicion on the
sensitivity came from the disproportion between the results
acquired by the 10-fold CV or by the evaluation on the cut-
outs, and the results obtained by the evaluation on the test
sets. The new expanded dataset, EX, GX, and SX, allowed us
a detailed exploration of this issue. A comparison of evalua-
tion results obtained on the expanded dataset with evaluation
results obtained on the original datasets is the key. In order
to get comparable results, the detectors S1, S2, and R tuned
according to the proposed methodology, must be evaluated
also on the sets E and G.

A high sensitivity of an assessed detector to the rotation
would be noticeable form a comparison of evaluation results
obtained on EX (GX) with evaluation results obtained on
E (G). Similarity of these results would indicate the high
sensitivity. Worse evaluation results obtained on EX (GX),
rather than on E (G), would also confirm the high sensitivity.
A low sensitivity of the detector would be visible from the
comparison of evaluation results obtained on EX and GX
with evaluation results obtained on SX. A worse performance
on EX or GX, rather than on SX, would confirm the low
sensitivity. All other results would signify its insensitivity to
the rotation. In order to eliminate a potential influence of the
proposed tuning methodology on the evaluation results, the
new results obtained for E and G were compared with the
original results.

3. Results and Discussion
3.1 Optimal Settings of Detectors
Optimal settings of the detectors were determined using the
presented methodology. In order to keep the continuity of
our work, the performance measures (1) were used for the
evaluation of the detector performance. It means that M =
{accuracy,precision, recall}. The accuracy was used for the
tuning of all former versions of the detectors. For this reason,
the accuracy was chosen as the primary measure with the
highest priority. Detection of all grapes in a photo is essential
for applications such as yield estimation. Thus, the recall
was taken as the secondary measure; and consequently, the
precision was considered to be the tertiary one.

Depending on the version, the detectors have up to five
tuning parameters. While the weighting coefficients w are
bounded by the conditions wR,wG,wB ∈ [0,1] and wR +wG +
wB = 1, the regularization constant C, likewise the kernel
width σ , must be positive. Based on our previous expe-
rience, the following settings of the parameters were used
within the search process: XC = {1,10,100,1000}, Xσ =
{1,10,20,30,40,100}, and p = 20. In such a way, sets Θ

of all admissible settings θ were formed.
While the search for the optimal setting of S1 and S2

according to the proposed methodology does not require any
intervention of human, the search for the optimal setting of R
cannot be performed without the computer vision expert.

3.1.1 Optimal Setting of Robust Detector with RBF Kernel
On the basis of data obtained within the training-evaluation
process, 72 graphs were created. On the basis of their mutual
comparison, we discovered that σ has much higher influ-
ence on the performance measured by accuracy and recall
than C. Further, we found that both, C and σ , influence the
performance only slightly from the perspective of precision.
The main trends captured by the graphs can be demonstrated
on graphs obtained for an arbitrary chosen setting of C and
σ ∈ {1,10,20,30,40}. For these purpose, we chose results
obtained for these values of σ and C = 10. The results are
shown for all three measures in Figs. 4-8.

The analysis of the 72 diagrams pointed out an abnor-
mality in the results obtained for σ = 1 and ∀C ∈ XC. The
abnormality is clearly visible in Fig. 4, where the performance
of the robust detector with the RBF kernel is shown for C = 10
and σ = 1. For example, accuracy (Fig. 4 a)) is 0.5 for the
majority of the settings w ∈W ; nevertheless, excellent scores
were achieved for some of them. It is apparent that a very
small change in the setting of the weighting coefficients would
lead to a drastic drop in accuracy. The diagrams for the other
measures (Fig. 4 b) and c)) show similar discrepancies. Very
similar graphs were obtained for ∀C ∈ XC in combination with
σ = 1.

The seriousness of the discrepancies is even more appar-
ent when comparing graphs obtained for σ = 1 with graphs
obtained for higher values of σ . Graphs obtained for C = 10
and σ > 1 (Figs. 5-8) show consistent trends for all perfor-
mance measures. Such trends were obtained for ∀C ∈ XC, and
∀σ ∈ {σ ∈ Xσ |σ 6= 1}. It is clear that σ = 1 cannot guar-
antee robustness of the final solution. Thus, all evaluation
results, obtained for σ = 1, were eliminated from the further
processing, i.e. Θ̂ = {(C,σ ,w) ∈Θ|σ 6= 1}. On the basis of
the formula (3), results summarized in Table 1 were obtained.

Table 1. Optimal settings of the robust detector with the RBF
kernel according to different measures. The results are
ordered according to the priority of the measures.

C σ w
θ ∗accuracy 10 30 (0.95,0.05,0.00)
θ ∗recall 10 40 (0.95,0.05,0.00)
θ ∗precision 1 10 (0.00,0.85,0.15)

Diverse results were obtained for the measures m ∈ M.
Although the measures have predefined priorities, meaning-
fulness of the results should be always considered before the
globally optimal setting θ ∗ is determined. It is apparent from
the graphs (Figs. 5-8) that the parameters σ ,w had negligible
influence on precision. When comparing all obtained graphs,
we found that also C hardly influenced precision. Thus, preci-
sion was abandoned within the final assessment.

According to the remaining two measures, the setting
providing the best performance was w = (0.95,0.05,0.00)
and C = 10. However, the obtained results did not allow
the direct determination of the optimal value of σ . Since
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accuracy had the higher priority, the optimal setting of σ

was determined according to this measure. As is apparent in
Fig. 7 and Fig. 8, there was only insignificant difference in the
performance measured using recall for σ = 30 and σ = 40.
Thus, we selected θ ∗ = (10,30,(0.95,0.05,0.00)) to be the
globally optimal setting for the robust detector with the RBF
kernel.

3.1.2 Optimal Setting of Robust Detector with Linear Ker-
nel

The analysis of the data obtained within the training-evaluation
process was much simpler in the case of the robust detector
with the linear kernel. At first, only 12 graphs were created
on the basis of the obtained data. Secondly, the regularization
constant C did not influence the performance of the detector,
i.e. identical graphs were obtained for ∀C ∈ XC. Thus, for
the next explanation, we selected results obtained for C = 1
(Fig. 9).

It is apparent in the graphs (Fig. 9) that there was no
anomaly in the evaluation results, and the detector reached
high scores for all used measures. It means that Θ̂ = Θ. Ac-
cording to the formula (3), settings summarized in Table 2
were determined to be optimal for ∀m ∈M.

Table 2. Optimal settings of the robust detector with the
linear kernel according to different measures. The results are
ordered according to the priority of the measures.

C w
θ ∗accuracy 1 (0.95,0.05,0.00)
θ ∗recall 1 (0.95,0.05,0.00)
θ ∗precision 1 (0.00,0.90,0.10)

As is apparent in Fig. 9, the weighting coefficients w
had almost no influence on precision. Thus, just accuracy
and recall were taken into account when the final decision
was made. Since identical optimal settings were obtained
for both measures, we can positively recommend the setting
θ ∗ = (1,(0.95,0.05,0.00)) as the globally optimal setting for
the robust detector with the linear kernel. However, we should
point out here that any C ∈ XC might be used as well.

3.1.3 Summary of Optimal Settings
Herein, we provide a summary of optimal settings for various
versions of the detectors. The summary can be found in
Table 3.

3.2 Evaluation of Detectors
In order to investigate the opened issues, evaluations of the
detectors on the expanded, as well as on the original datasets
were done. The results obtained on the expanded sets, EX,
GX and SX, are summarized in Table 4. The results obtained
on the original sets, E and G, are stated in Table 4 and Table 5,
respectively.

3.3 Discussion of Evaluation Results
Two main issues were opened in this article. Our findings are
presented in following text.

Table 3. Optimal settings for various versions of the detectors
where: S2 - detector without any conversion, S1 - detector
with the conversion according to ITU-R recommendation
BT.601, R - detector with optimally set-up generalized
conversion (2).

version Linear kernel RBF kernel
C w C σ w

S2 1 - 1 40 -
S1 1 - 10 30 -
R 1 (0.95,0.05,0.00) 10 30 (0.95,0.05,0.00)

3.3.1 Assessment of Conversion Importance
The importance of the conversion in the grape detectors was
assessed on the basis of results obtained on EX, GX and SX
(Table 4). Let us consider the results obtained for the detec-
tors with the linear kernel at first. From comparison of S1
and R with S2, it follows that the standard conversion accord-
ing to the ITU-R recommendation, as well as the generalized
conversion according to (2), enhanced scores obtained using
accuracy and recall on EX and GX. The improvement is more
evident for recall. Precision was slightly better for S1 for these
datasets; however, a small downturn in precision was regis-
tered for R. Considering the significant improvement in recall,
the conversions seemed to be valuable parts of the detectors.
However, the results obtained on SX did not confirm these
outcomes. Thus, using of a conversion for detectors with the
linear kernel cannot be positively recommended.

In the case of the detectors with the RBF kernel, the re-
sults spoke definitely on behalf of the conversions. The de-
tectors S1 and R out performed the detector S2 in accuracy,
and especially in recall, on all the expanded sets, i.e. on
EX, GX and SX. Within all the experiments, the changes
in precision were marginal. Let us focus now only on the
detectors S1 and R. From the results, it is apparent that R
always out performed S2 in accuracy and recall. We consid-
ered the downturn of precision of R to be marginal. Indeed,
it never fell below 0.9800. Thus, from the perspective of the
performance, the robust detector with the RBF kernel can be
positively recommended as the most reliable solution. With
accuracy≥ 94.37 %, recall≥ 0.9010 and precision≥ 0.9816,
the robust grape detector with the RBF kernel is fully compa-
rable with the state-of-the-art solutions aimed at the detection
of single grapes of white varieties.

3.3.2 Inquire into the Sensitivity to the Rotation
As the first step, we compared the results obtained for the
detectors S1 and S2 (Tables 5-6), tuned according to the pro-
posed methodology, with the original results [9]. We found
that the new results are almost identical to the original ones.
We came to the conclusion that the tuning methodology did
not influence the results significantly.

In the second step, we compared the results achieved by
the detectors on type matching sets, i.e. results obtained
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Table 4. Evaluation of the detectors trained on T-3, setup according to Table 3, on new datasets of environment type (EX),
grape type (GX), and standard type (SX), where |P|= 2000 and |N|= 2000. Following versions of the detectors where
evaluated using the measures (1): S2 - detector without any conversion, S1 - detector with the conversion according to ITU-R
recommendation BT.601, R - detector with the generalized conversion (2).

kernel version EX-1 EX-2 GX-1 GX-2 SX
accuracy precision recall accuracy precision recall accuracy precision recall accuracy precision recall accuracy precision recall

linear
S2 91.73% 0.9755 0.8560 90.93% 0.9712 0.8435 91.87% 0.9788 0.8560 91.10% 0.9751 0.8435 95.23% 0.9804 0.9230
S1 94.15% 0.9768 0.9045 92.07% 0.9714 0.8670 94.63% 0.9869 0.9045 92.40% 0.9786 0.8670 94.73% 0.9833 0.9100
R 94.20% 0.9580 0.9245 93.07% 0.9600 0.8990 95.07% 0.9757 0.9245 93.83% 0.9756 0.8990 94.70% 0.9671 0.9255

RBF
S2 93.27% 0.9909 0.8735 92.20% 0.9879 0.8545 93.25% 0.9904 0.8735 92.20% 0.9879 0.8545 95.83% 0.9909 0.9250
S1 94.87% 0.9854 0.9110 93.73% 0.9888 0.8845 95.33% 0.9940 0.9120 93.63% 0.9866 0.8845 95.85% 0.9914 0.9250
R 95.85% 0.9816 0.9345 94.37% 0.9852 0.9010 96.35% 0.9920 0.9345 94.50% 0.9879 0.9010 95.87% 0.9873 0.9295

Table 5. Evaluation of the detectors trained on T-3, setup according to Table 3, on original datasets of environment type (E),
where |P|= 200 and |N|= 200. Following versions of the detectors where evaluated using the measures (1): S2 - detector
without any conversion, S1 - detector with the conversion according to ITU-R recommendation BT.601, R - detector with the
generalized conversion (2).

kernel version E-1 E-2 E-3 E-4 E-5
accuracy precision recall accuracy precision recall accuracy precision recall accuracy precision recall accuracy precision recall

linear
S2 86.50% 1.0000 0.7300 87.25% 0.9869 0.7550 85.50% 0.9671 0.7350 86.25% 0.9801 0.7400 84.50% 0.9859 0.7000
S1 88.50% 0.9873 0.7800 88.50% 0.9753 0.7900 87.50% 0.9573 0.7850 87.75% 0.9748 0.7750 87.00% 0.9868 0.7500
R 88.25% 0.9693 0.7900 90.25% 0.9763 0.8250 88.75% 0.9586 0.8100 88.25% 0.9693 0.7900 87.75% 0.9809 0.7700

RBF
S2 88.00% 0.9935 0.7650 89.50% 0.9938 0.7950 88.00% 0.9872 0.7700 87.75% 0.9935 0.7600 86.25% 1.0000 0.7250
S1 89.50% 1.0000 0.7900 90.25% 0.9879 0.8150 89.00% 0.9815 0.7950 89.25% 0.9937 0.7900 87.50% 1.0000 0.7500
R 88.50% 0.9936 0.7750 89.50% 0.9877 0.8000 88.50% 0.9812 0.7850 88.00% 0.9634 0.7900 86.75% 0.9933 0.7400

on E (G) were compared with results obtained on EX (GX).
We found that all detectors tuned according to the proposed
methodology achieved significantly better results on the ex-
panded sets EX and GX (Table 4), rather than on the original
sets E (Table 5) and G (Table 6). It is evident that the poor
performance of the detectors, which was reported in [7, 9],
was mainly due to the inappropriateness of the sets E and G.
Thus, we recommended using exclusively the new expanded
datasets for the evaluation.

In the third step, we compared the results achieved by the
detectors on the expanded sets (Table 4). For both types of the
kernels, we observed a connection between the performance
of the detectors and the grayscale conversion. While the de-
tectors S2 (without the conversion) had considerably lower
recall on EX and GX than on SX, the robust detectors reached
almost identical results on all these sets. The detectors S1
showed results on the borderline between S2 and R. Thus, we
came to the conclusion that the detectors are sensitive to the
image rotation; however, the sensitivity can be suppressed
by the grayscale conversion. We further found that the ro-
bust detector with the RBF kernel is almost resistant to this
distortion.

4. Conclusion
The grape detectors based on SVMs classifiers and HOG fea-
tures were appropriate solutions for detection of single grapes
of white varieties, supported by excellent results by the 10-
fold CV and the evaluation on the real-life images. However,
results obtained by the evaluation on the test sets prompted
a thorough examination of the detector performance for a
confirmation of its expected merits. Our results showed that

the grayscale conversion should be excluded when the SVM
classifier with the linear kernel is used in combination with
the HOG features. Using the linear kernel and skipping the
entire image pre-processing, ensures a low time complexity
of the final solution, while keeping excellent performance on
standard datasets. Such solution might be used in applications
where worse performance under unfavourable conditions is
not critical, e.g. in autonomous vineyard sprayers.

The robust grape detector with the RBF kernel is fully
comparable with the state-of-the-art solutions aimed at de-
tection of single grapes of white varieties. The detector has
greater time complexity than a detector without the grayscale
conversion, but this disadvantage is counterbalanced by its
excellent performance. Since the robust grape detector with
the RBF kernel provides excellent results under standard con-
ditions, as well as under unfavourable conditions, we recom-
mended its usage in applications where the high accuracy and
recall are essential, e.g. for the yield estimation.

In the presented application, the modification of the gray-
scale conversion proved to be valuable. We believe that its
usage is not limited to the grape detection. The modifica-
tion, together with the tool set for parameter optimization,
as well as the novel visualization method introduced in this
contribution, might be used in various application areas.
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Figure 4. Performance of the robust detector with the RBF kernel for C = 10 and σ = 1 according to: a) accuracy, b) precision,
c) recall.
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Figure 5. Performance of the robust detector with the RBF kernel for C = 10 and σ = 10 according to: a) accuracy, b)
precision, c) recall.
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Figure 6. Performance of the robust detector with the RBF kernel for C = 10 and σ = 20 according to: a) accuracy, b)
precision, c) recall.
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Figure 7. Performance of the robust detector with the RBF kernel for C = 10 and σ = 30 according to: a) accuracy, b)
precision, c) recall.
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Figure 8. Performance of the robust detector with the RBF kernel for C = 10 and σ = 40 according to: a) accuracy, b)
precision, c) recall.
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Figure 9. Performance of the robust detector with the linear kernel for C = 1 according to: a) accuracy, b) precision, c) recall.
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