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ABSTRACT

In recent years, there has been an increasing interest in designing intelligent vehicles
such that they can take necessary actions according to the environmental changes
around them and they can inform decision makers about these changes. For safer
and cheaper transport, dynamic modelling of these vehicles and identification of
such changes in environment based on these models plays an important role. In this
study, a sigma point Kalman filter based scheme (i.e. joint unscented Kalman filter)
is proposed to estimate maximum friction coefficient as a parameter in wheel-rail
interface. This estimation scheme uses interpretation of lateral and yaw dynamic
response of a wheelset to identify maximum friction coefficient. This joint unscented
Kalman filter based approach provides information about the friction conditions in
wheel-rail interface without post-processing of estimated data.
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1. Introduction

The dynamic response of a railway vehicle depends upon the interaction of wheel and
rail. When the friction condition in this interface changes, it directly affects dynamic
response of the vehicle. This response is a key to have faster and safer vehicles.

Friction condition must be considered during the traction or braking phase such that
if it is not taken into consideration, phenomena like wear, instability and unwanted
delays in schedule may occur. Furthermore, important track signals can be passed due
to low friction levels which can cause accidents. Therefore, there is a need of having
information about the friction conditions in wheel-rail interface.

The use of model based filtering for railway vehicles is not a new concept. Neverthe-
less, the focus of such model based filtering schemes is mostly estimating the conditions
of primary and secondary suspension systems. This is called condition monitoring and
this scheme helps to arrange more efficient maintenance schedules [1-3].

Previously reported studies reveal that different friction (i.e. adhesion) conditions
cause different dynamic responses of wheelset. First attempts for detection of low ad-
hesion is presented by Charles and Goodall [4] and Charles et al. [5], and it is stated
that estimating creep coefficients from dynamic response is problematic, and for ac-
curate estimation, more knowledge about the wheel-rail contact must be included.
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Charles et al. [5] conclude that instead of having information of exact friction coeffi-
cient, an indication of low adhesion conditions is sufficient and this can be achieved
by estimating contact forces and processing them. Xia et al. [6, 7] present an inverse
model based contact forces estimation scheme that can be used for adhesion condition
identification purpose. A multiple model estimation scheme for adhesion condition es-
timation is demonstrated by Hussain et al. [8] and instead of estimating contact forces
or moments, the residuals of a set of Kalman filters are analysed. These filters are
operating in different points of creep force — creepage curves. This proposed multiple
model scheme also requires a post-processing stage to interpret adhesion conditions
from residuals of Kalman filters. Besides, the wheelset model [8] has coned wheels
without lateral primary suspension, which is not realistic, as across the globe worn
wheel profiles are used recently. A model based adhesion estimation scheme, which is
based on the analysis of contact forces and moments, is reported by Ward et al. [9].
The dependence of creep forces and moments upon the level of track irregularity is
emphasized as it makes difficult to interpret adhesion conditions without prior knowl-
edge of track irregularity. However, without prior knowledge of the track irregularity
level, adhesion conditions can be estimated by using a post—processing method based
on the eigenvalue analysis [9]. A non-model based method is proposed by Hubbard et
al. [10] which is based on the comparison of the dynamical responses of leading and
trailing wheelsets. In this non-model based estimation scheme, the yaw positions of the
leading and trailing bogies are used. A search to find a cross correlation of all dynamic
variables of leading and trailing bogies is conducted and it is concluded that biggest
change in correlation is in the yaw angle and it can be used for interpretation [10].
Spiryagin et al. [11] introduce a method to identify adhesion condition which is based
on the relationship between adhesion coefficient and slip for different friction condi-
tions. This method uses the vertical and tractive force estimators for a locomotive to
determine traction coefficient and then estimates the friction conditions by using the
slip obtained from a slip estimator [11].

The main problem in model based estimation schemes is to decide a model which
represents the physical system exactly in each condition. Dynamic modelling of railway
vehicles for estimation purposes is not an exception. Especially, a model of a contact is
vital to understand the interaction between wheel and rail. As stated in a recent sur-
vey of wheel-rail contact models by Meymand et al. [12], the most accurate solutions
are proposed by Kalker [13, 14] for normal and tangential contact problem, but these
solutions are computationally expensive to use in vehicle dynamics simulations. Most
important requirement for a contact model is that it should be accurate and as com-
putationally simple as possible. For the solution of the normal contact problem, theory
of Hertz [15] is still used in up-to—date commercial multi-body simulation (i.e. MBS)
tools and theory of Hertz is the simplest and fastest solution for the normal contact
problem. On the other hand, other theories for normal contact problem mentioned
by Meymand et al. [12] are more accurate than the theory of Hertz, whereas they
require more computational power. In order to find contact forces, Kalker [16] also
presents a method, namely Fastsim, which is the slightly modified version of his sim-
plified theory. Thus, it can also be used for practical applications. Bosso et al. [17, 18]
demonstrate such a real time contact module which leads to the possibility of using
complex simulation models in diagnostic or control systems. This contact module and
most of the up—to—date commercial multi-body system tools consider Fastsim as a so-
lution method for the tangential problem. Although there are significant improvements
for contact mechanics [12], even implementation of these simplified algorithms can be
computationally expensive. Zhou et al. [19] use a medium-sized field-programmable



gate array (i.e. FPGA) based multiprocessor system to overcome this disadvantage. In
this study, theory of Hertz [15] is considered for the solution of normal contact prob-
lem and the analytical method proposed by Polach [20, 21] is used for the solution of
tangential problem. This analytical method for the solution of tangential problem is 3
to 8 times faster than Fastsim [20].

Especially at very low adhesion conditions, because of the decreasing creep forces,
the restorative force due to the gravitational stiffness term becomes dominant force
with respect to creep forces at wheel-rail contact [22]. Therefore, modelling errors due
to linear contact approximation cause problems in order to identify very low adhesion
conditions. Based on a nonlinear contact approximation, a comparison study between
lateral dynamic responses of two degree of freedom dynamic model of a wheelset and
MBS model is provided by Hubbard et al. [22]. It is concluded and shown that a two
degree of freedom dynamic model of a wheelset is sufficient to capture lateral dynamic
response of a wheelset with respect to lateral track irregularities.

To the authors’ knowledge, the present work is the first one step estimation scheme
proposed in related literature by using a joint unscented Kalman filter for estimation
of maximum friction coefficient from dynamic response of a wheelset. The filtering
method used in this work, namely unscented Kalman filter (i.e. UKF), dates back to
the study by Julier et al. [23] and based on the seminal work of Kalman [24]. Kalman
filter is optimal in sense of expectations (i.e. mean) and it uses the fact that conditional
distributions of Gaussian random process are Gaussian. Kalman filter can only be
applied to linear (or linearized) systems successfully. Another type of Kalman filter,
namely extended Kalman filter (i.e. EKF), can be used for estimation of nonlinear
systems and it is based on system linearization. EKF requires Jacobian matrix for the
nonlinear system. Besides, even in linearizable systems, calculation of Jacobian matrix
is difficult and error prone operation. In order to overcome these mentioned drawbacks,
related with linearization and Jacobian matrix, unscented transformation (i.e. UT) is
proposed. A very first explanation of this transform is given by Julier et al. [23]. In
UKF, states and parameters are again represented by Gaussian random variables from
a set of carefully chosen sample points [25]. These sample points are named as sigma
points. Various versions and details of sigma point Kalman filters are reported by Van
Der Merwe [26]. UT is based on the fact that it is easier to approximate probability
distributions than approximating an arbitrary nonlinear function [27]. Chosen sigma
points are subjected to a nonlinear transformation (UT) via nonlinear function of the
system in order to obtain transformed points. By using the statistical properties of
the transformed points, mean and covariance can be calculated for estimation. UKF
seems as a similar approach to particle filters [26], but it exhibits several differences.
Firstly, rather than particles, sigma points are chosen deterministically according to
given mean and covariance. As a result, higher order information can be extracted by
considering small amount of points. The important points of UKF are given by Julier
et al. [27] as: firstly, algorithm includes finite number of points so that algorithm can
be used as black box filtering to calculate estimated quantities when a model is given
with defined inputs and outputs. This is the property in this study, which leads to the
estimation of the quantity (e.g. maximum friction coefficient) in wheel-rail interface.
The second important point is that the computational complexity of UKF is similar to
that of EKF. Thirdly, UKF can be used with discontinuous transformations. Readers
are referred to the studies by Kandepu et al. [28] and Matzuka et al. [29] which
explain the application of UKF in nonlinear dynamic systems for state and parameter
estimation. Additionally, a review of performance measures for such kind of filters are
provided by Haug [30].



States and Estimation of Initial

C Parameters Conditions
‘

Wheelset Model

Contact Model

Technical

Data of * Roll Angle Material Properties Normal
Wheel-Rail  of wheelset () (i.e. Poisson Ratio) Force

* Curvatures at
Contact Contact Patch

Wheel-Rail | *Contact Angles |[Wheel - Rail Dimensions Wheel- Rail
Geometrical > Normal > Tangential

Problem Problem Problem

Creep States and State States and
Forces Lateral Unscented

. Derivatives Parameters
Dynamic > Kalman —>®

Model Filter
Simulated
Lateral Track Measurements Measurements
Irregularities or
MBS Model

or
Real Vehicle

Figure 1.: General structure of estimation

This estimation approach can be used to obtain a friction map of different rail
sections or to alert driver. The general structure of this study can be seen in Figure 1.
This article is organized as follows: In Section 2, the contact model, which is used to
solve wheel-rail geometrical, normal and tangential problem, is described shortly. In
Section 3, the dynamic model, considered in this study, is explained. In Section 4, the
dynamic response of the wheelset is given with respect to a defined input and track
irregularities are defined. Section 5 covers brief information about UKF, results and
their discussion.

2. Contact model

The wheel, considered in this study, has a new S1002 profile and rail has a UIC60E1
profile with 1:40 inclination. This wheel-rail pair is widely used across the Europe.
Technical details and related data can be found about this wheel-rail profile in related
European standards. Detailed explanations of the contact model are presented by Onat
et al. [31]. Therefore, a brief description of this contact model is given here.

In order to solve geometrical problem, lateral position of wheels and rails are used,
and then curvatures and conicity angles of wheel-rail are obtained, accordingly. As
wheelset shifts laterally, especially in the vicinity of flange contact, considerable roll
angle occurs which changes the contact point compared to the case when no roll angle



is assumed. The semi—analytical method to find roll angle of the wheelset reported
by Li [32] is used in this work. This semi—analytical method considers the equality of
vertical distances at contact points on the right and left wheel. Let din, and dpin,
be the minima of vertical distances between wheels and rails on the right and left
side, respectively. If the respective minima occur in the contact points, then these
two minima should be equal. If they are not equal, roll angle of the wheelset must be
adjusted. Suppose dpin, > dmin,, then the wheelset must be rotated clockwise by an
angle

dmin - dminl
A = Zmine = Cmine, (1)

Ymin;, — Ymin,.

where Ypmin, and ymi,, are the lateral positions of the minima. Rotation must be
repeated until these two minima are equal in terms of the tolerance €;,;. In this study,
the value of the tolerance is taken as 10~%. Therefore, the roll angle can be calculated
as a sum of the incremental rotations

k
0 =060+ > Ab, (2)

i=1

where k is the number of rotations and 6 is the initial roll angle. In this study, initial
roll angle is accepted zero for all lateral shifts of the wheelset.

Quasi-elastic contact search method, reported by Arnold and Netter [33] and Schupp
et al. [34], is used for contact locus search. Elastic contact search method is more real-
istic approach, but it requires the use of finite element methods. Therefore, the com-
putational complexity is high. Quasi-elastic contact search method uses the weighted
average of the distance function in the area of contact patch. The maximum deforma-
tion occurs at the contact patch and for other distant points, deformation decreases.
The assumption here is that the relationship between deformations of both surfaces
is exponential. An illustration of the parameters used in quasi-elastic contact search
can be found in Figure 2. The weight function with respect to the distance function
is given as

—d(S, Zwheel s Zrail) > (3)

w(s, RZwheel s Z’/‘ail) = exp ( c
where € is the regularization parameter. Regularization parameter is chosen so that
vertical displacement of the wheel has the same size as the elastic deformation in pure
elastic normal contact model as stated by Arnold and Netter [33]. In this study, it
is chosen as 2 x 10™° which is within the range of appropriate values emphasized by
Arnold and Netter [33]. Furthermore, s given in Equation 3, is defined as s = y — y.,
where 7. is the y coordinate of the rigid contact point. The new contact location s in
terms of s is defined as

ISMM S.U}(S, Zwheel s Zrail)ds
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Figure 2.: Parameters used in quasi-elastic contact search

In order to solve wheel-rail normal problem, theory of Hertz [15] is used. For fast
calculation, an approximation function is reported by Shabana et al. [35] to obtain
tabulated coefficients given by Hertz [15]. In this work, the numerical solution of
elliptical integrals are used to find contact patch by using theory of Hertz. Details of
this methodology to find contact patch are presented by Onat et al. [31]. Dependent
on how many terms are used in the solution of elliptical integrals, result can be more
accurate while having close computational complexity to the approximation functions.
In order to validate results of the normal problem and contact search, results provided
by Gensys [36] are considered. Results can be seen for the contact patch semi-axes
ratio in Figure 3. Biggest difference between results in Figure 3 is seen in the area of
switching from wheel tread to the flange and in the flange contact. Additionally, it
is a well - known fact that theory of Hertz does not provide accurate results in case
of flange contact where contact angle changes substantially within the same contact
patch as stated by Burgelman et al. [37]. The non—conformal contact assumption of
Hertz fails in case of flange contact and flange contact occurs especially in the arcs of
turnouts and in curves. For such cases, different contact models must be used [37]. In
this study, since the level of track irregularities does not cause a flange contact and
straight track is assumed, it is concluded that theory of Hertz is sufficient. Although
it is not stated by Gensys [36], a different method might be used in case of flange
contact similar to method presented by Burgelman et al. [37].

A creep force model is required to solve tangential problem. An experimentally
validated creep force model is used in this work [21]. Besides, spin is an important
phenomenon in the solution of wheel-rail contact problem. In this study, the effect
of spin on lateral creep force is also considered and details of how spin causes an
increase in lateral tangential force are expressed by Polach [20]. In order to calculate
creep forces, it is a well - known fact that tabulated coefficients [13], namely Kalker
coefficients, are required. These coefficients are tabulated with respect to the ratio
of contact patch semi-axes and combined Poisson’s ratio of wheel-rail. A polynomial
fit for this table is reported by Iwnicki [38]. However, polynomial fit [38] assumes
that Poisson’s ratio of steel is close to 0.27 and polynomial equations are given only
with respect to contact patch semi—axes ratio. In this work, Poisson’s ratio of the
wheel-rail is considered as 0.28 and the polynomial fit proposed by second author
is used. This polynomial fit consists also Poisson’s ratio as a variable. Polynomial
fit for the Kalker coefficient in the longitudinal direction, which is considered in this
study, is presented by Onat et al. [39]. Additionally, coefficients in other directions
have similar polynomial structure. Minimum ratio of semi—axes in these polynomial
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Figure 3.: Comparison of (a) result of this study (b) result of multi-body simulation
tool Gensys, adapted from [36]

Table 1.: Creep force model parameters

Parameters Definitions Dry Wet Low Very low

1o Maximum friction coefficient 0.5 0.2 0.08 0.04
at zero slip velocity

A Ratio of friction coefficients 0.4 0.4 0.4 0.4
Joo/ Ho

B Coefficient of exponential fric- 0.6 0.2 0.2 0.1
tion decrease (s/m)

ka Reduction factor in the area 1 1 0.6 0.3
of adhesion

kg Reduction factor in the area 0.4 0.4 0.2 0.1
of slip

fits is 0.04 and maximum ratio is 25. After obtaining Kalker coefficients, by using the
creep force model with the assumption of decreasing friction coefficient with increasing
slip proposed by Polach [21], tangential forces in longitudinal and lateral direction is
calculated. The parameters for the creep force and friction model are selected similar
to given by Charles et al. [5] and can be found in Table 1. In Table 1, it should be
noted that decreasing friction causes a decrease in initial gradient of creep force—creep
curve. Therefore, in order to be consistent with the real situation, different reduction
factors k4 and ks are selected with decreasing friction condition.

It is a known fact that dry or wet friction conditions do not constitute problem
for braking, whereas low and very low friction conditions do. Especially in the design
of braking systems across Europe, coefficient of friction of 0.15 is assumed (generally
with some exceptions) such that the required braking performance must be achieved
for any value of coefficient friction which is greater or equal to 0.15, as stated in the
article 4.2.4.6.1 of European standard [40].
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Figure 4.: Plan view model of a wheelset (a) top view and (b) front view

3. Dynamic model of wheelset

The dynamic model of wheelset reported by Garg and Dukkipati [41], namely plan—
view dynamic model, is used in this study. An illustration of wheelset can be found
in Figure 4, which shows the interconnections between wheelset and bogie, and forces
acting on the wheelset. It has been shown by Hubbard et al. [10, 22] that this model is
sufficient to track lateral dynamic response of wheelset in comparison with simulations
by using Vampire multi-body simulation package.

Differential equations for the lateral dynamic model of the wheelset can be given as
follows:

mwy:FLy+FRy+NLy+NRy+FSya (53)
waw = _Iwy%(by + (RLzFLy - RLyFLx) + (RRzFRy - RRyFRx)

+ RNy sin (5L — qb) — Rp,Npsin (53 — qb) + My, + Mg, + Mg, (5b)

In Equation 5b, Rp;, Rg:, Rry, Rry are the components of position defined in
inertial fixed frame (i.e. equilibrium axis). Definitions of these vectors and other terms
in these equations are provided by Garg and Dukkipati [41]. Additionally, in order to
allow wheelset to follow track irregularities, instead of a rigid support between wheelset
and superstructure, this model includes a laterally constrained suspended mass (1)



which can be given by

My m = _FSy~ (6)

In this equation, Fg, is the acting lateral force due to the lateral suspension ele-
ments, and Mg, in Equation 5b is the acting yaw moment due to the longitudinal
suspension elements, which are defined by

FSy = _Qky(y - ym) - Qby(y - ym)a (73)
Mg, = —2kyd*yp — 2b,d?1), (7b)

where d is the half of the distance between suspension centres and can be seen clearly
in Figure 4. These forces and moments are defined in the axis of wheelset centre,
and they must be transformed into the fixed inertial frame by using transformation
matrices presented by Garg and Dukkipati [41]. Besides, in order to calculate creep
force components, definitions of creepages are required. The lateral and longitudinal
creepages defined by Onat et al. [39] are used in this study.

4. Dynamic response of a wheelset due to track irregularities

In this section, the lateral and yaw dynamic response of the wheelset are shown with
respect to a 5 mm step input under different maximum friction coefficient conditions.
Hereby, step input represents the instantaneous change in lateral alignment of track
with a magnitude of 5 mm. Parameters, which are used for simulations in this study,
can be found in Table 2.

Table 2.: Wheelset dynamic model parameters

Parameters Definitions Values

v Longitudinal Velocity of Wheelset 40 m/s

0 Nominal Radius of Wheels 0.46 m

S Half of the Tape Line Distance 0.75 m

G Shear Modulus of Rigidity of Wheel and Rail 8 x 10'° Pa
Q Wheel Load 55 kN

ky Lateral Spring Stiffness 2 x 10 N/m
kz Longitudinal Spring Stiffness 4 x 10% N/m
by Lateral Damping Coefficient 1 x 103 Ns/m
b, Longitudinal Damping Coefficient 1 x 103 Ns/m
d Half of the Distance Between Suspension Centers 1m
Moy Mass of the Wheelset 1813 kg
My, Suspended Mass 6241 kg
Ly Moment of Inertia of Wheelset Around y Axis 112 kgm?
Ly Moment of Inertia of Wheelset Around x Axis 1120 kgm?

Step input is applied after 1 second, and it can be easily seen in Figure 5 that
the wheelset has a unique response with respect to the different maximum friction
conditions with same lateral alignment irregularity. This is the main reason to conclude



that maximum friction coefficient can be estimated at one step by using a model based
filtering method (i.e. UKF). Similar responses of identical dynamic model of a wheelset
with respect to different maximum friction conditions are reported by Hubbard et al.
[22] and also a decrease in yaw angle with respect to decreasing friction coefficient is
observable [22]. It is indicated that in order to estimate extremely low levels of adhesion
by processing estimated contact forces and moments, a linear contact approximation
is insufficient [22]. Therefore, a non-linear contact model is also considered in this
study.
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Figure 5.: Dynamic response of the wheelset with respect to different friction condi-
tions: (a) lateral Shift, (b) yaw angle, (c) lateral velocity and (d) yaw velocity

In order to be consistent with the real situation, instead of randomly generated
step inputs for lateral alignment irregularity, measurements from a track section (3
km length) between Chocen—Dobiikov, Czech Republic is considered in this study.
The details of how track irregularities are measured with respect to related standards
given by Karis [42]. In this study, since only lateral and yaw dynamics are consid-
ered, the lateral alignment irregularities are used. The statistical characteristics of the
considered irregularity are presented in Table 3.

Table 3.: Lateral track irregularity statistical characteristics

Maximum irregularity (mm) Minimum irregularity (mm) Standard deviation (mm) Variance (mm?)
3.8 mm -3.3541 mm 0.8103 mm 0.9002 mm?

Similar to the study by Pombo et al. [43], track irregularities are also parametrized
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here by using shape preserving cubic splines with respect to the track length. In
Chapter 14 of the study reported by Iwnicki [38], lateral alignment irregularity can be
derived from the lateral shift of the rails as

YL +Yr
LR, (®)

Yirr =

An illustration of lateral alignment irregularity is presented by Iwnicki [38].

The dynamic model used in this study is validated by means of comparison with
respect to a model of multi-body simulation software VAMPIRE, in Section 3.2 of
the study given by Hubbard et al. [22]. Both dynamic models considered in this study
and in [22] are similar, instead, as well as a nonlinear contact patch, model presented
here includes a nonlinear creep force model. Additionally, a comparison of a linear
plan view suspension model and the 3D suspension model of VAMPIRE is provided
by Hubbard et al. [10] and concluded in model development and validation section of
same study that linear plan view suspension forces sufficiently match the suspension
forces with respect to 3D suspension model of VAMPIRE. Therefore, it is concluded
that this dynamic model can be used both in estimation and simulation.

5. Unscented Kalman filter and estimation results

The detailed explanations of Unscented Kalman filter for state and parameter estima-
tion with some examples are reported by several authors [23, 25, 26, 29]. Consider the
continuous time nonlinear system given in Equation 5 in the form as stated by Zheng
et al. [44]:

l’(t) =f (.%'(t), u(t), 0) + Q<t)v (93‘)
y(t) = h(x(t),0) +r(t), (9b)

where z(t) € R" is the system state vector, u(t) € R is the input (in this case lateral
alignment irregularities), 6 is the parameter (i.e. maximum friction coefficient), y(t) €
R™ is the measurement vector (i.e. system output), ¢(t) ~ N(0,Q(¢)) and r(t) ~
N (0, R(t)) are process and measurement noises, respectively. In this study, the system
is considered as discretized continous system and can be expressed by

= fa(Tp—1,k—1,0k—1,k — 1) + q—1, (10a)
Yk = h (xg, Op—1,k — 1) + 7, (10b)

where xp = x(kT), the subscript k represents discrete time, and 7' is the sampling
period. The function f; does not require an explicit formula, but a numerical inte-
gration is needed for calculation. In this study, fourth order Runge-Kutta numerical
integration method is used. Additionally, the sampling rate is 1 kHz, which is a valid
sampling rate in dynamic analysis of railway vehicles as stated in chapter 2 of the
study presented by Garg and Dukkipati [41]. In this case of application, the input
to the system is lateral track irregularities, but as the measurements are taken from
wheelset, it is not included in the system. Therefore, the system is output only. A
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non-augmented (i.e. additive noise case) joint unscented Kalman filter structure is
used since it has an advantage of less computational complexity. The state vector is
chosen similar to previous studies reported by Hubbard et al. [10, 22|, whereas in
this study contact force and moment are not included in the state vector since direct
estimation of friction condition is aimed. State vector can be given as

i=lg & § b ) (11)

It is emphasized by Ward et al. [9] and Hubbard et al. [10, 22] that all states
of wheelset dynamics are essential for estimation. Therefore, wheelset positions and
velocities are required as measurements. Especially, these data could be derived from
accelerometers and yaw gyros [10], and such a method is given for estimating rail
irregularities by Kawasaki and Youcef-Toumi [45]. This method can also be used
for deriving positions and velocities of a wheelset. Therefore, derivation of positions
and velocities from accelerometers and yaw gyros is not investigated in this study. In
addition to state vector, output vector (i.e. measurements vector) can be given as

yout:[y vy 1/1} (12)

Readers are highly referred to read the study by Matzuka et al. [29], which demon-
strates the use of Kalman type filters for parameter estimation including UKF'.

A series of simulations are carried out by using unscented Kalman filter. Firstly,
static tests are given. The word static refers to the friction conditions which no friction
change in the interface occur. The friction conditions, which are demonstrated in Table
1, are used in simulations. For static tests, initial conditions for states are same and
equal to zero. Initial parameter estimates fig = [0.10 0.15 0.15 0.40} are selected
with respect to the real friction conditions ug = [0.04 0.08 0.20 0.50]. Furthermore,
the filter parameters « which is used to determine distribution of sigma points, &
the secondary scaling parameter, and § a non—negative weight incorporating prior
knowledge of state distribution are taken 0.5, 0 and 2, respectively. Initial covariance
matrix, process and measurement noise matrices considered here are the same for all
conditions and given by

Py=[107%, 1073, 1073, 1073, 0.5], (13a)
Q=1[10"3107%8x10"% 8x107* 1.6 x 107'], (13b)
R=1[10"% 1078, 1078, 1078] . (13c)

During simulations, it has been observed that for dry and low friction conditions,
parameter term of the state vector can be unrealistic. This is due to some sigma
points either include very high level of maximum friction coefficient estimates at dry
conditions or very low level of maximum friction coefficient estimates (even negative
values) at low and very low friction conditions. In order to prevent this unrealistic
situation, the box constraint mentioned by Kandepu et al. [28] is applied to parameter
estimate. Parameter estimate is controlled with respect to the box constraint which
can be presented as
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0.01 < fig < 0.60. (14)

These limits for maximum friction coefficient, which are applied as a box constraint,
are the realistic limits that corresponds to the real situation in wheel-rail interface.
Results for static tests can be seen in Figure 6. From this figure, it can be rapidly con-
cluded that the estimator provides good estimation of the friction levels. There is no
significant differences between estimates and real values. However, estimator has a dif-
ficulty to converge exact values of the parameter due to the similar dynamic responses
for close friction coefficients in magnitude (e.g. for 0.45 and 0.5). Such situation is also
reported in Figure 10 of previous study by Hubbard et al. [22]. Furthermore, in order
to interpret outputs of static tests clearly, a moving average window [9] can be used
to eliminate drifts in the parameter estimate.
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Figure 6.: Maximum friction coefficient estimation results in static case

Last remark about the static tests is, for very low friction condition (i.e. = 0.04),
wheelset is operated close to the instability due to considered reduction factors k4 and
ks and combined with the structure of the joint unscented Kalman filter, this situation
causes performance degradation in the estimation of very low friction condition. Due to
the structure of joint unscented Kalman filter, the error is equally partitioned among
the states and the parameter, as expressed by Matzuka et al. [29]. The effect of these
facts can be observed in Figure 6 (d). However, the performance of the estimator is
sufficient to detect a friction level which is under the critical friction level for braking
(1 = 0.15) mentioned in the last paragraph of Section 2.
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For such estimators, a visual inspection of the results can be deceptive. Therefore,
a performance measure different from visual inspection should be considered. The
performance measures for family of Kalman filters are provided by Haug [30]. In this
study, root mean squared error is used as the performance measure. Root mean squared
error can be given as

ERMS = []\1/[ i (91‘ - éi>2] 5 : (15)

=0

where 6 represents the parameter (i.e. pp) and M represents the total number of
sampled points. For the first case given in Fig. 6 (d) (i.e. up = 0.04), for 75 sec.
simulation, the Root Mean Squared Error (i.e. RMSE) is approximately 0.0654. The
level of RMSE in this case is satisfactory since the detection of very low conditions is
sufficient with respect to the critical friction coefficient value (1 = 0.15) for braking.
When quantities of the friction levels are considered, the RMSE levels show that this
one step estimation scheme is promising. RMSEs for different friction levels can be
found in Table 4.

Table 4.: RMSE values for static tests

Dry Wet Low  Very low
Root mean squared errors 0.0781 0.0457 0.0367  0.0654

As well as adaptation to static friction conditions, estimator should be able to adapt
itself to a change in friction conditions. Therefore, a series of step change tests are
conducted and results can be seen in Figure 7. All initial conditions and covariance
matrices for the step change in friction tests are same as they are in static tests
shown in Figure 6. The difference in step change tests is that at ¢ = 20 seconds
the maximum friction coefficient changes to low (i.e. up = 0.08) and very low (i.e.
to = 0.04) friction conditions. Additionally, for the first 20 seconds, the results for
dry and wet conditions in step change tests are same as the case in static tests. It
is revealed in Figure 7 that estimator can adapt the maximum friction coefficient
estimate from dry and wet conditions to low and very low friction conditions. Most
important point in this approach is that the estimator is robust against the change
in other parameters of the creep force and friction model. With decreasing friction
conditions, ratio of friction coefficients (1/ue0) A, coefficient of exponential friction
decrease B, reduction factors k4 and kg decrease as well, but estimator starts with
the knowledge of these parameters for dry and wet conditions. In other words, after
20 seconds these parameters also change, whereas no information about these changes
is provided to estimator. Even in such condition, estimator is robust enough to handle
uncertainties in other creep force and friction model parameters.

One may criticize the slow response of the estimator in case of change from dry to
low and very low conditions. This is due to structure of the joint unscented Kalman
filter. As stated by Matzuka et al. [29], the joint method is partitioning the error
equally among the states and the parameter, and can pass it back and forth. This
situation causes estimator to operate with lag and drifts in parameter estimation. A
dual filter can operate without lag and drifts, but this method requires interpretation
of states by using a second filter, which means post processing of states and it is not
desirable. However, if the critical value of friction coefficient (1 = 0.15) for braking is

14



0.6 r r r r r r r 0.6 r r r r r r r
— 1 (Real) — 1 (Real)
05 — — — ji (Estimate) 4 05 F — — — jio (Estimate) 1
ssnsnnnnns g = 0.15 (Critical value for braking) sssnnnnnnn g = 0.15 (Critical value for braking)
04 f 1 0.4 f 1
£03f 1 £03¢ 1
A A
m LA
0.2 m " [,“'” Wy 1 0.2 m ,‘ =, 1y 1
At v, N ¢ ] 4
0.1 - PRI AL iAlt 0.1f Yo iy
LR ) j' M [Vl ’\.. N4
L L W ) "JIV"N" L L L L L L arwa’
0O 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
time time

(a) From po = 0.20 to po = 0.08 (b) From po = 0.20 to po = 0.04

0.6 0.6 :
— 1) (Real) — (1) (Real)
— — — /iy (Estimate) — — — /iy (Estimate)
05 m=) | sssssnsnnn = 0.15 (Critical valut for braking) 1 05 m= | ssssssnnnn =015 (Critical value for braking)
.:‘\ J"" \ .:‘\ ‘f"‘l :
0.4 I~ 1 0.4 = 1
g \ “ o) { ~
Ll | [y "1,
- R -
203 L 1 203 . ]
be_ys ]
A%,
0.2 ‘i 1 0.2 Lithan 1
L S -~ L =\ oM
0.1 .‘I ’m« 0.1 ,,\«\,Mf
0O 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
time time
(¢) From po = 0.50 to pup = 0.08 (d) From po = 0.50 to po = 0.04

Figure 7.: Step change in friction conditions

taken as an indicator, the performance of the estimator is considered as sufficient. In
case of change from dry to low and very low conditions, estimator reaches the critical
value of friction coefficient approximately 25 seconds later after step change. When
the translational velocity of the vehicle (40 m/s) is taken into account, the distance
for having information about critical level is equal to 1000 meters. It is a well-known
fact that in case of high speed trains, braking distances can be up to 3000 meters and
even more. Therefore, the response is sufficient enough to alert driver and/or decision
makers to take necessary actions within the braking distance of high speed trains in
operation.

6. Conclusion

Low friction condition in railway vehicle systems is a problem as they can cause prob-
lems in accelerating and braking which are the possible reasons of wear, unstability
of vehicle and unpredictable delays in schedule. Furthermore, important track signals
can be passed due to low friction levels and this can cause accidents. The identifica-
tion of such conditions is therefore important. This study proposes the use of joint
unscented Kalman filter for identification of such conditions. The novelty of using a
joint unscented Kalman filter is that it eliminates the post-processing methods pro-
posed in previous studies. The simulations presented here show that this estimation
scheme is promising for estimating maximum friction coefficient. Besides, the use of
real track irregularity data is an indication that from real vehicle measurements, such
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a mechanism can be used to estimate friction conditions.

It is obvious from the Figure 7 that there is a delay to alert driver. This is due to
the structure of the UKF and UKF can only achieve good performance under accurate
reference models, exact knowledge of noise distribution and proper initial conditions
as stated by Han et al. [46]. Aside from using a dual filter for improving the detection
of friction coefficient change, which means post-processing of states via second filter,
adaptive mechanisms can be put into UKF to reduce the time for detection [46].
These adaptive mechanisms provide promising results and automatically tunes the
filter parameters to match real statistics and conditions [46].

Traction and braking processes cause a change in creepage. This situation may cause
the wheelset operate in the nonlinear region of the creep force—creepage curve and a
degradation in the performance of the estimation scheme. Furthermore, especially
during traction and braking processes, the wheelset can have almost same lateral
dynamic responses for different friction coefficients with different tractive and braking
efforts [8]. Estimator can fail to detect friction conditions accurately in such cases.
Therefore, with the knowledge of tractive or braking effort and a simple torsional
model as used by Hussain et al. [8], friction conditions can be detected during traction
or braking by using the estimation scheme presented in this study.

Further work can be the use of adaptive mechanisms for tuning filter parameters
and validation of such estimation mechanism with the data taken from a multi-body
system simulation model or real vehicle measurements.
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