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Abstract 

The goal of this paper is to analyze the electricity prices using chaos theory and to predict using 

nonlinear method. At first we estimated the time delay and the embedding dimension, which is 

needed for the Lyapunov exponent estimation and for the phase space reconstruction. 

Subsequently, we computed the largest Lyapunov exponent, which is one of the important 

indicators of chaos. The results indicated that chaotic behaviors obviously exist in electricity 

price series. If the system behaves chaotically, we are forced to accept limited predictions. 

Finally we computed predictions using a radial basis function to fit global nonlinear functions 

to the data. In this paper we analyze electricity price series of the biggest European 

energy markets EEX (Central European Energy Exchange). 
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1. Introduction 

Electricity is one of those commodities with which price is highly volatile and with 

considerable number of jumps. That is especially caused by the fact that the electricity is not 

possible to store. Thus the prediction of electricity price is a really complicated problem. 

Forecasting electricity energy prices began in the 1990’s, at the beginning of the liberalization 

process (Kříž et Kratochvíl, 2014). It is very important for electricity traders to forecast 

electricity prices with the highest possible precision as the precision of the forecast is 

connected to the trading strategy and thus with profit or lost. An electricity price depends on 

the demand and supply and on the costs of transportation in the grid. The first two features are 

strongly dependent on the weather, economic situation, government interventions etc. These 

dependencies result in a very complex fluctuation of electricity prices, which may seem to be 

slightly chaotic. Electricity is a flow commodity with unique characteristics that influence the 

way it is traded and thus the behavior of spot and futures prices in the market. The price is set 

by an interaction between supply and demand and in set in auction at a single time for the 

whole 24 hours of the following day. Demand for electricity is highly inelastic. In short run, it 

is absolutely inelastic so that the price is determined by the supply curve completely. The 

curve resembles upward sloping stairway, each step approximately represents a different type 

of a power plant and thus a different level of marginal costs. The price on the market rises 

until it reaches the marginal costs for a MWh of the power plant of the next level, after that 
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the supply rises (Kristoufek et Lunackova, 2013). The electricity spot prices can also be split 

up into deterministic and stochastic parts. The deterministic part describes the seasonality and 

all the periodic patterns (intra-day, intra-weak, peak, weekend patterns). This part is easily 

observable and we can describe it simply. The stochastic part (also called volatility), on the 

contrary, is unobservable and seems chaotic (Kříž et Kratochvíl, 2014). Real processes in 

nature, according to the expectation of Mandelbrot (1983), lie somewhere between pure 

deterministic process and white noise. This is why we can describe reality either by a 

stochastic or deterministic model. Long memory in time series are characteristic with values 

in past in past influencing the present and future values. Few works is focused to analyze a 

long memory in electricity price time series e.g. Kříž et Lešáková (2016b), Kristoufek et 

Lunackova (2013), Weron et Przybyłowicz (2002). According Weron et Przybyłowicz (2002) 

the whole complex process of electricity price formation results in behavior not observed in 

the financial or even other commodity markets. Forecasting of any commodity or derivative 

price is a common problem discussed in a lot of articles. Prediction on electricity prices have 

been discussed in several recent papers e.g. Kratochvíl et Starý (2013). Numerous new 

methods of electricity prices time series analysis have been developed for dealing with 

nonlinear data e.g. Conejo et al. (2005), Misiorek et al. (2006), Pao (2007).  

To be able to use these methods and models we will have to prove first that electricity spot 

prices behave chaotically and that it is adequate to use a chaotic description. The basic 

question is therefore the existence of chaotic behavior. If the system behaves chaotically, we 

are forced to accept only limited predictions. Nevertheless chaotic behavior is much better 

than random processes (Kříž et Kratochvíl, 2014). 

 

2. Methodology 

2.1 Chaos theory 

Chaos theory allows for the reconstruction of phase space from time series, which can be 

used for specifying the system states (Abardanel et al., 1973). This analysis is based on 

Takens (1980) embedding theorems. Takens’ theorem transforms the prediction problem from 

time extrapolation to phase space interpolation (Kříž, 2013). For more information see Kříž et 

Lešáková (2016b). 

Let there be given a time series x1, x2, … , xN which is embedded into the m-dimensional 

phase space by the time delay vectors. A point in the phase space is given as: 

 )1(,...,2,1  ,...,, )1(   mNnxxxY mnnnn , (1) 

where  is the time delay and m is the embedding dimension. Different choices of  and m 

yield different reconstructed trajectories. Kodba et al. (2005) discuss how we can determine 

optimal  and m. We use method developed by Fraser et Swinney (1986), which is based on 

the mutual information between xn and xn+ as a suitable quantity for determining . The 

mutual information between xn and xn+ quantifies the amount of information we have about 

the state xn+ presuming we know the state xn. The mutual information function is: 
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where Ph and Pk denote the probabilities that the variable assumes a value inside the h
th

 and 

k
th

 bins, respectively, and Ph,k() is the joint probability that xn is in bin h and xn+ is in bin k. 

The first minimum of I() then marks the optimal choice for the time delay. 

The embedding dimension m can be chosen using the “false nearest neighbors’” method. 

This method measures the percentage of close neighboring points in a given dimension that 
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remain so in the next highest dimension. The minimum embedding dimension capable of 

containing the reconstructed attractor is that for which the percentage of false nearest 

neighbors drops to zero for a given tolerance level μ. 

In order to calculate the fraction of false nearest neighbors the following algorithm is used 

according to Kennel et al. (1982). Given a point p(i) in the m-dimensional embedding space, 

one first has to find a neighbor p(j), so that 

 )()( jpip . (3) 

We then calculate the normalized distance Ri between the (m + 1)th embedding coordinate 

of points p(i) and p(j) according to the equation: 
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If Ri is larger than a given threshold Rtr , then p(i) is marked as having a false nearest 

neighbor. Equation (4) has to be applied for the whole time series and for various m = 1, 2, … 

until the fraction of points for which Ri > Rtr is negligible Kodba et al. (2005). 

Lyapunov exponent λ of a dynamical system is a quantity that characterizes the rate of 

separation of infinitesimally close trajectories. The largest Lyapunov exponent can be defined 

as follows: 
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A positive largest Lyapunov exponent is usually taken as an indication that the system is 

chaotic. We have used the Rosenstein (1983) algorithm, which counts the largest Lyapunov 

exponent as follows: 
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where dj(i) is distance from the j point to its nearest neighbor after i time steps and M is the 

number of reconstructed points. 

2.2 Nonlinear prediction 

Predictability is one way how correlations between data express themselves (Hegger et al., 

1999). Most properties of chaotic systems are much more easily determined from the 

governing equations than from a time series. Unfortunately, the governing equations are 

usually not known, except for well controlled laboratory experiments. Analyzing an empirical 

model, and maybe synthetic time series data generated from it, can provide a valuable 

consistency test for the results of time series analysis. Chaotic dynamical systems generically 

show the phenomenon of structural instability (Kantz et Schreiber, 1997). 

According Kantz et Schreiber (1997), using the reconstructed phase space for m and τ, a 

functional relationship f between the current state X(t) and future state X(t + T) can be given as 

))(()( tXfTtX  , (7) 

where T represents the number of time steps ahead that one wishes to perform the 

prediction. Function f represents the approximation to unknown dynamical system. It is shown 

that for sufficiently large values of the embedding dimension and if some additional 

conditions are satisfied, the reconstructed trajectory has the same topological and geometrical 

properties as the system’s phase space trajectory (Takens, 1981). The predictive mapping can 

be expressed as 

))(()( tXfTtX p . (8) 
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The aim is to find the predictor fp, so that x(t + T) can be predicted based on the 

reconstructed time series. If the time series is chaotic, then fp is necessarily nonlinear. Several 

local and global approaches are available in the literature to find the function fp (Farmer et 

Sidorowich, 1987). 

The idea of locally linear predictions is following. If there is a good reason to assume that the 

relation 

)(1 nn sfs   (9) 

is fulfilled by the experimental data in good approximation (say, within 5%) for some 

unknown f and that f is smooth, predictions can be improved by fitting local linear models. 

They can be considered as the local Taylor expansion of the unknown f, and are easily 

determined by minimizing 
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with respect to an and bn, where Un is the ε-neighborhood of sn, excluding sn, as before. 

Then, the prediction is 

nnnn bsas 1
ˆ  (11) 

The minimization problem can be solved through a set of coupled linear equations, a 

standard linear algebra problem (Hegger et al., 1999). 

The local linear fits are very flexible, but can go wrong on parts of the phase space where 

the points do not span the available space dimensions and where the inverse of the matrix 

involved in the solution of the minimization does not exist. Moreover, very often a large set of 

different linear maps is unsatisfying. Therefore many authors suggested fitting global 

nonlinear functions to the data, i.e. to solve 
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where fp is now a nonlinear function in closed form with parameters p, with respect to 

which the minimization is done. The results depend on how far the chosen ansatz fp is suited 

to model the unknown nonlinear function, and on how well the data are deterministic at all 

(Hegger et al., 1999). A radial basis function (RBF) is a real-valued function whose value 

depends only on the distance from the origin, or alternatively on the distance from some other 

point xi, called a center, or alternatively on the distance from some other point c, called a 

center, so that 
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Gaussian kernel is used in this analysis.  
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3. Empirical analysis 

We used the data from one of the biggest European energy markets EEX (Central European 

Energy Exchange). This exchange has a lot of participants and good liquidity. We use 

PHELIX hourly spot prices from 8.2.2005 to 31.3.2006 (fig.1). This is 10000 samples, which 

is a sufficient amount of data for our study. 

 

 
Figure 1: Electricity spot prices (PHELIX hourly spot prices from 8.2.2005 to 31.3.2006) 

 
At first we used the mutual information approach to determine the time delay  and the 

false nearest neighbor method to determine the minimal sufficient embedding dimension m.  

is estimated as the first minimum of the mutual information function I() (2) marks the 

optimal choice for the time delay. Thus, the time delay  is 7. The embedding dimension m is 

chosen using the “false nearest neighbors’” method, estimated from the graph. The minimum 

embedding dimension capable of containing the reconstructed attractor is that for which the 

percentage of false nearest neighbors drops to zero for a given tolerance level μ. Thus, the 

embedding dimension m is 7. 

Then we calculated the largest Lyapunov exponent as was shown above. We used the 

Rosenstein algorithm. The value of the largest Lyapunov exponent was estimated at 0,0006 

for embedding dimension 7. A positive largest Lyapunov exponent is one of the necessary 

conditions for chaotic behavior. This result is consistent with the work of Kříž et Kratochvíl 

(2014), where was shown that the electricity price series is chaotic. 

Finally we computed predictions using a Gaussian radial basis function to fit global non-

linear functions to the data. This prediction using RBF for the first few hours is very good 

even though this is an area with a high volatility (fig.2). In many cases the prediction correctly 

estimated the peaks and trends of the electricity prices time series. Predictions using RBF can 

be used in long term.  
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Figure 2: Electricity spot prices and its prediction (last 200 values) 

 

4. Conclusion 

Chaos theory has changed the thinking of scientists and the methodology of science. 

Making a theoretical prediction and then matching it to the experiment is not possible in 

chaotic processes.  Long term forecasts are, in principle, also impossible according to chaos 

theory. Now it is known that real processes are nonlinear and a linear view can be wrong. The 

basic question is therefore - the existence of chaotic behavior. If the system behaves 

chaotically, we are forced to accept only limited predictions. But it is much better than random 

processes. 

We shown in this paper that the electricity price time series is chaotic. First, we computed 

the values of the time delay  = 7 and the embedding dimension m = 7. The estimated largest 

Lyapunov exponent is 0,0006. If the correlation dimension is low, the largest Lyapunov 

exponent is positive and the Kolmogorov entropy has a finite positive value, chaos is probably 

present. From these estimations it can be concluded that electricity prices time series is 

chaotic. Finally we computed predictions using a Gaussian RBF to fit global nonlinear 

functions to the data. Considering all these findings, we recommend the Gaussian RBF to fit 

global non-linear functions as one of the methods used for prediction. As it may not be 

reliable under certain circumstances, it should be used in combination with other prediction 

methods. 
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