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Abstract: The properties of self-similar sets are discussed and a brief historical survey of 
ideas related to the notion of self-similarity is presented. An example of a self-similar set is 
introduced and its Hausdorff and box dimensions are computed. 
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1. Introduction 
Let ),( dX  be a metric space and ),( yxd  the distance between x and y in ),( dX . A map 

),(),(: dXdXS →  is called a similarity with ratio c if there exists a number 0>c  such that 
),())(),(( yxcdySxSd =  for all ),(, dXyx ∈ . Often ),( dX  is the space nR  with the 

Euclidean metric,  i.e. ∑
=

−=
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2),( . Geometrically seen, similarity transformations 

include a homothety, an isometry and their compositions. Two sets are similar, if one is the 
image of the other under a similarity transformation. A set E is said to be self-similar, if it can 
be expressed as a union of m similar images of itself, that is, 
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A self-similar set defined by (1) may be seen as the invariant set or the attractor of an 
iterated function system (IFS), where all functions mSS ,,1 K  of the IFS are similarities with 
ratios mcc ,,1 K . If 1<kc  for all k, then all of these transformations are contractions (the 
corresponding IFS is sometimes called hyperbolic). Theory of IFS guarantees that if the space 

),( dX  is complete and all mSS ,,1 K  are contractions, there exists a unique nonempty 
compact set defined by (1). 

The construction of an invariant set E may start with any nonempty compact set 0F . For 

every 0>n  we take U
m

k nkn FSF
11 )(

=+ = . The sequence }{ nF  converges (is “attracting” to) the 
set E (in the Hausdorff metric). 

A concept related to self-similarity is self-affinity. A self-affine set is defined in the same 
way as a self-similar one with affine transformations instead of similarities. An affine 
transformation consists of a linear transformation and a translation and may contract with 
different ratios in different directions. Self-similarity is thus a particular case of self-affinity. 

Some form of self-similarity has been recognized as a typical property of objects 
introduced as counterexamples or exceptions to proposed general rules in mathematical 
analysis and considered now as early examples of fractals. The word “fractal” appeared for 
the first time in B. Mandelbrot's book “Les objets fractals: forme, hasard et dimension”, 
which was published in 1975; its extended English version appeared two years later [7]. 
Although Mandelbrot is not an inventor of fractals, his contribution consists in revealing 
common features behind these objects and shapes that can be found in nature. One of these 
features was that of self-similarity. 
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Mandelbrot’s ideas brought wide public attention when his famous book “The Fractal 
Geometry of Nature” was published [8]. Fractal theory has been used to model various real-
world phenomena, from distribution of galaxies to applications in the world of finance, 
including stock market analysis. These models employ rather statistical than strict self-
similarity, which is typical for many fractals in mathematics. 

2. Development of the notion of self-similarity and related concepts 
A standard example of a self-similar set is the Cantor ternary set, which is now regarded as 

one of the earliest fractals. Another well-known self-similar set is the von Koch curve, 
introduced in 1904 as an example of a continuous curve having no tangents, constructible by 
means of elementary geometry. It was E. Cesàro, who first noticed the importance of self-
similarity of the von Koch curve. In his paper [2], which appeared only one year after the 
original von Koch's memoir, he writes: “If it [the curve] was gifted with life, it would not be 
possible to destroy it altogether, for it will be reborn ceaselessly from the depths of its 
triangles, just like life in the universe.” 

The general study of curves consisting of parts similar to the whole, including that of von 
Koch, was published in 1938 by P. Lévy [6]. Lévy notices that the part of his treatise related 
to the von Koch curve is based on results presented as early as 1908. Lévy introduces his own 
example of a plane curve constructed recursively in the same manner as the curve of von 
Koch. The limiting curve is now known as the Lévy C curve or the Lévy dragon. 

The basic mathematical tool to describe fractals is the fractal dimension. Its definition goes 
back to F. Hausdorff, who defined the dimension which can take non-integer values in 1918. 
Another classical definition is that of Minkowski-Bouligand, mostly referred to as the box or 
box-counting dimension. Evaluation of the Hausdorff dimension, which is usually difficult, 
turns out to be quite easy in case of (strictly) self-similar sets. For the definition of the 
Hausdorff and box dimensions, see e.g. [3]. 

The problem of the Hausdorff dimension of self-similar sets was studied by P. A. P. Moran 
in his paper [9]. Let mSS ,,1 K  be a collection of similarities with ratios mcc ,,1 K  and let 

∑ =
=

m

k
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1
1  for some 0>D . Then the number D equals the Hausdorff dimension if some 

additional “separation” condition, called the open set condition, is satisfied. 

The collection of transformations mSS ,,1 K  satisfies the open set condition if there exists a 
nonempty bounded open set U such that UUS i ⊂)(  for mi ,,1 K= , and ∅=∩ )()( USUS ji  
for ji ≠ . 

The general theory of self-similar sets was developed by J. E. Hutchinson in 1981 [5]. Self-
similar sets were also studied in general framework independently by M. Hata [4]. The 
concept of IFS may be found in the paper [9] by Moran (if not earlier). It was developed 
thoroughly by M. Barnsley in his influential book “Fractals Everywhere” [1]. 

3. An example of a self-similar set 
Let ),( dX  be a set C of complex numbers equipped with the usual metric, i.e. 

2121 ),( zzzzd −=  for C∈21 , zz . For mk ,,1 K=  , 2≥m  we define 

 )1()( 1 += − azzS k
k ω , (2) 
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where 10 << a  and m
i

e
π

ω
2

= . Every kS  is thus a contraction with the ratio aa k =−1ω  and 

the collection of transformations mSS ,,1 K  determines a self-similar set E  (see Fig. 1).  

 

 

Fig. 1: The self-similar set defined by transformations (2) with 9=m  and 4/1=a . 

 

According to the result of Williams (see e.g. [10], p. 25), the set E  is connected if  λ≥a , 

where ])cos1(2/[1
4/1

2∑
<≤

+=
mj m

jπ
λ . If λ≤a , then the set E satisfies the open set condition, if 

we take the interior of the regular polygon with vertices 
a
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−

−
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1ω , mk ,,1 K=  for the set U. The 

Hausdorff dimension D of the set E is then the unique solution of the equation 1=Dma , i. e. 

a
mD

log
log

−= .  

The box dimension is equal to the same value D, which can be easily verified by the 
following calculation. Let 1B  be a cover of E consisting of m balls of diameter 

)1/(21 aad −= , centered at the points 1−kω , mk ,,1 K=  (i. e. images of the point 0 under 
transformations mSS ,,1 K ), 2B  a cover of E consisting of 2m  balls of diameter 

)1/(2 2
2 aad −= , centered at the images of 0 under transformations ,,, 2111 Koo SSSS  

mm SS o , etc. nB  is thus a cover which consists of nm  balls  of diameter )1/(2 aad n
n −= . 
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Since every member of nB  intersects E, the box counting dimension is exactly equal to 

D
d
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=

∞→ )/1log(
loglim .  

Note that for λ=a  and 5≥m  we obtain a connected set with no overlaps, which consists 
of infinitely many similar arcs reminding the von Koch curve. Construction of an arc C for 

9=m  with the line segment [0,1] as initial set (for simplicity) is depicted in Fig. 2.  
 

 

 

 

 
 

Fig. 2: Approximating polygons for the Koch-like curve.  

 

The arc C is self-similar, since it can be taken as the invariant set of a collection of 
contractions 

 11 )( bazzS += , 22 )( bzazS += ω , 3
2

3 )( bzazS += ω , (3) 

 4
2

4 )( bzazS += ω , 55 )( bzazS += ω , 66 )( bzazS +=    
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Here 1b  represents the point 0 and )1(1−= jj Sb  for 1>j . Since C consists of  six similar 
copies of itself scaled by the factor a and the set C satisfies the open set condition, its 
Hausdorff dimension is given as the solution of the equation 16 =Da  and equals 

32167,1
log

6log
≈−=

a
D . 

The set C is a Jordan curve (a continuous curve without multiple points); the continuity 
follows from the fact that the sequence of approximating polygons in Fig. 2 converges 
uniformly to C. In general, these curves can be constructed by )1(2 pl +=  transformations, 
where p is the largest integer less than m/4.  

4. Conclusion 
Methods of fractal analysis are widely used in many areas of science, including financial 

mathematics, geology, biology, computer science and others. Fractal characteristics of various 
real world phenomena may provide useful additional information for understanding the 
underlying nature of the observed processes. Functions whose graphs are fractal sets are 
sometimes more adequate to interpolate real data than smooth functions. Some form of self-
similarity is typical for many fractal sets. Investigation of self-similar sets has been therefore 
important not only for purely mathematical reasons, but also for their usefulness in 
applications.  
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