
  

SCIENTIFIC PAPERS 
OF THE UNIVERSITY OF PARDUBICE 

Series B 
The Jan Perner Transport Faculty 

8 (2002) 
 
 
 
 
 

CONSTRAINT PROGRAMMING: AN APPLICATION FOR GRAPH 
COLORING  

 
 
 
 

Ľudmila JÁNOŠÍKOVÁ 
Radoslav STASINKA 

 
 
 

Katedra dopravných sieti, Fakulta riadenia a informatiky, Žilinská univerzita 
 
 

1. Introduction 

Constraint programming is a software technology for declarative description and 
solution of problems with finite and discrete set of feasible solutions. Its development 
began in artificial intelligence in seventies. In recent years, possibilities of its applications 
in other areas, like operations research and computer graphics have been intensively 
studied.  

A problem is formulated in a declarative way using variables and constraints. To 
find a solution, variables are instantiated in a sequential order so that every constraint is 
satisfied. The works published (e.g. [3, 7]) have claimed that the method is particularly 
suitable for solving NP-hard problems and problems with constraints, which are difficult to 
formalize or cannot be expressed in the form of linear equations.  

In this paper, we describe a constraint programming application for the graph 
coloring problem. The goal is to assign colors (or any distinct marks) to vertices of the 
graph so that no two adjacent vertices have the same color. We can either find coloration 
with a given number of colors k (so called k-coloring) or with the minimum number of 

Scientific Papers of the University of Pardubice 
Series B - The Jan Perner Transport Faculty 8 (2002)  - 129 - 



 Ľudmila Jánošíková, Radoslav Stasinka: 
- 130 - Constraint Programming: An Application for Graph Coloring 
 

colors χ (optimal coloring). The k-coloring problem is a NP-hard problem for k < 2χ and 
an open problem for k ≥ 2χ [2]. The optimal coloring problem is NP-hard [6].  

Our goal was to find out whether constraint programming is a suitable method for 
the graph coloring problem and which modification is the best for which types of graphs. 

The graph coloring problem can be viewed as a constraint satisfaction problem. 
Section 2 reviews how a constraint satisfaction problem can be solved using constraint 
programming. Section 3 describes a constraint programming application for the k-coloring 
problem and the optimal coloring problem. It also presents the computational results and 
their analysis.  

2. Constraint Satisfaction Problem and Constraint Programming 

A constraint satisfaction problem (CSP) consists of 

• a set of variables X = {x1, ..., xn}, where each variable xi can take a value from a 
finite set Di of possible values, and 

• a set of constraints limiting the combinations of values that the variables can 
simultaneously take. 

Set Di is called the domain of variable xi. The solution of a CSP is an assignment 
of values to the variables, which satisfies all constraints.  

The CSP is most often solved using systematic search through the possible 
assignments of values to variables. A depth-first search strategy is usually applied. In one 
step, a partial value assignment is extended by one variable if the variable can take a 
value from its domain so that no constraint between this variable and already instantiated 
variables is violated. If a partial solution is extended to all variables, a solution is found. If 
no feasible value can be assigned to the current variable, the search process backtracks 
to the previous variable and a new value is tried. If the root of the search tree is again 
reached and all branches originating in the root have been explored, the problem has no 
solution. This way of solution space search is known as backtracking. 

To reduce the number of explored branches in the search tree, after a value has 
been assigned to the current variable, future variables are made consistent with this 
variable by deleting those values from their domains, which are disallowed by constraints. 
We will refer to this process as constraint propagation.  

Constraint propagation can be of a different scope. It can refer just to 
uninstantiated variables that share constraints with the current variable. This constraint 
propagation algorithm is called forward checking. Domain revision of an uninstantiated 
variable can affect domains of other uninstantiated variables that share constraints with it. 
Hence, constraint propagation can be expanded to other variables that do not have 
common constraints with the current variable. The algorithm checking all uninstantiated 
variables is called look-ahead. 



  

If constraint propagation causes the domain of any uninstantiated variable to 
become empty, it is known that a given value of the current variable would lead to failure 
therefore another value has to be assigned. If no domain becomes empty, another 
uninstantiated variable is chosen and the search continues to the depth. If the next 
variable is a consistent one, any value from its domain can be assigned and constraints 
between this variable and already instantiated variables do not need be tested. 

By reducing the domains of future variables we reduce the number of explored 
branches of the search tree. However, processing of one node is more expensive then in 
simple backtracking. The whole running time of algorithm with constraint propagation can 
be worse then without constraint propagation, although the number of explored nodes is 
smaller.  

Another issue to consider is the order in which variables are considered for 
instantiation. The order can be set beforehand (static), it can change during the search 
(dynamic), or it can be defined using a combination of a static and a dynamic key. One of 
the possible keys for variable ordering is the domain size, where the variable with the 
smallest number of possible remaining alternatives is selected for instantiation. Another 
possibility is to first instantiate the variable, which participates in the largest number of 
constraints. The order in which variables are chosen for instantiation can have substantial 
impact on the search complexity [4]. 

3. Constraint Programming for Graph Coloring 

3.1 k-coloring 
The k-coloring problem can be viewed as a constraint satisfaction problem. A 

variable with domain {1, 2, ..., k} is associated with each vertex of the graph. All 
constraints are binary. They express that no two variables representing adjacent vertices 
can have the same value. 

We solved this problem using several versions of the backtracking algorithm, which 
differ in constraint propagation scope and variable ordering: 

• simple backtracking with backward check of constraints (we will refer to as BT), 

• backtracking combined with a forward checking algorithm (labeled BT-FC), 

• backtracking combined with a look-ahead algorithm (labeled BT-L). 

We also tested several orders in which variables are chosen for instantiation. The 
next variable can be: 

• version 1: a variable with the smallest domain size, 

• version 2: a variable with the smallest domain size; the first variable is the one, 
that participates in most constraints (it corresponds to the highest degree vertex), 

• version 3: a variable with the smallest domain size; if several variables have the 
same domain size, then the chosen variable is the one, that participates in most 

Scientific Papers of the University of Pardubice 
Series B - The Jan Perner Transport Faculty 8 (2002)  - 131 - 



 Ľudmila Jánošíková, Radoslav Stasinka: 
- 132 - Constraint Programming: An Application for Graph Coloring 
 

constraints. Variables in this version are ordered according to two keys: the 
primary one (domain size) is dynamic, the secondary one (number of constraints) 
is static.  

• version 4: a variable that shares most constraints with already instantiated 
variables (it corresponds to the vertex with the highest number of colored 
neighbors). If there are more variables of the same order, then the chosen 
variable is the one, that participates in most constraints. In this version, variables 
are ordered according to two keys as well: The number of already colored 
neighbors of the vertex represented by a given variable is a primary dynamic key, 
the vertex degree is a secondary static key. 

The complexity of the backtracking algorithm is always exponential, because the 
number of search tree nodes is kn, where n is the number of vertices of the graph. 

In the area of implementation of the algorithms, most attention was paid to data 
structures that keep the ordered list of uninstantiated variables. Since the list is updated 
in each step of the backtracking algorithm, it has to be designed so that operations of 
adding and deleting from the list could be performed in O(1) time. 

If variables are ordered according to one key (see versions 1 and 2), then the list is 
implemented using an array of pointers to linear lists of variables. The size of the array is 
defined by the maximum key value, which is, in our case, the maximum domain size, i.e. 
the given number of colors. Each field of the array contains a pointer to a doubly-
connected list of variables with the same domain size. 

If variables are ordered according to two keys, then the list is implemented using a 
two-dimensional array of pointers to doubly-connected lists of variables with the same 
values of both keys. The primary key is the first index of the array, and the secondary key 
is the second index. 

The goal of our experiments was to find out, which constraint propagation strategy 
and which variable ordering are the best for the k-coloring problem. We tested algorithm 
BT-FC with variable ordering 1, 2, 3 and 4 (we will use labels BT-FC1, BT-FC2, BT-FC3 
a BT-FC4), and algorithm BT-L with variable ordering 1 and 4 (we will label BT-L1 a BT-
L4). We performed experiments on a great number of various types of graphs, like 
general and planar graphs generated by random access, complete graphs, real planar 
graphs, and benchmark graphs published in literature and available on the Internet 
address ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color. The number of 
colors to be used for graph coloring was specified through an input parameter of the 
algorithm. The maximum number of colors was specified by the maximum vertex degree 
+ 1, which is an upper bound of the chromatic number [5]. We measured time taken by 
the algorithm in order to find a solution or realize that the graph cannot be colored by the 
given number of colors. 

ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color


  

The computational results for some benchmark graphs are reported in Table 1. 
The graph name and the number of colors k are tabulated in the first two columns. The 
third column contains the result of coloring, where the letter Y stands for ‘can be colored’, 
and the letter N stands for ‘cannot be colored’. In the next columns, there are running 
times of the particular algorithms. Times are in milliseconds. Symbol X instead of time 
means that execution was interrupted after 10 minutes. If algorithms reached equal time 
for several colors, time is reported just once and the corresponding number of colors is 
indicated by an interval with lower and upper bounds (e.g. 2-6), or without upper bound, 
e.g. 31+. 

Experiments were performed on a PC Pentium II/466 MHz. 

Table tab. 2 summarizes graph characteristics. Number of vertices, number of 
edges, minimum, average and maximum vertex degree, graph density and chromatic 
number are tabulated.  

Let us analyze the results in tab. 1 and try to define how much constraint 
propagation is useful. We have to compare column BT-FC1 against column BT-L1, or 
BT-FC4 against BT-L4. We can see that the propagation of a bigger number of 
constraints results in extension of the overall time of the calculation. Algorithm BT-L1 
was, on average, 8.2-times slower than BT-FC1, and algorithm BT-L4 was 4.9-times 
worse than BT-FC4. Similar results were achieved on general and complete graphs. 
Therefore, we can positively say that it is better to perform constraint propagation in a 
limited scope. This conclusion is in accordance with proposition published in [4]. 

Planar graphs with 50 to 1000 vertices were colored with 3, 4 and 5 colors. All 
versions of the backtracking algorithm combined with constraint propagation finished their 
runs immediately, that is why no conclusion about the scope of constraint propagation 
and variable ordering can be drawn from the results on planar graphs.   

Comparison with the simple backtracking algorithm is interesting. On sparse 
graphs like planar graphs and benchmark graphs le450_5a, le450_15a and le450_25a, 
the simple backtracking algorithm needs several times more time than the constraint 
propagation algorithms. On the contrary, on the other graphs with density over 10 %, BT 
finishes immediately, execution gets slower along with higher number of colors 
approximating the chromatic number. Good results of the constraint propagation 
algorithms on sparse graphs can be explained by short time needed to explore one node 
in the search tree. Since every vertex of the graph has few neighbors, after it has been 
colored (the corresponding variable has been assigned), only few constraints need to be 
propagated. In this case, node exploration, resulting in search tree reduction, shortens 
the overall running time.  

As for the order in which variables are selected from the set of uninstantiated 
variables, the results are not as clear as the results of constraint propagation. 
Computational experiments indicate that the suitable strategy depends on the average 

Scientific Papers of the University of Pardubice 
Series B - The Jan Perner Transport Faculty 8 (2002)  - 133 - 



 Ľudmila Jánošíková, Radoslav Stasinka: 
- 134 - Constraint Programming: An Application for Graph Coloring 
 

vertex degree. In tab. 1, we can see that the running times of the BT-FC3 and BT-FC4 
algorithms are approximately the same for graphs le450_15a, le450_25a and zeroin.i.2.  



  

Graph name k Result BT BT-FC1 BT-FC2 BT-FC3 BT-FC4 BT-L1 BT-L4
fpsol2.i.1 2-7 N 0 0-50 0-50 0-50 0-110 0-110 0-280

8 N 0 50 50 440 660 280 1870
9 N 0 270 330 2800 3840 2690 15100

10 N 0 2520 2690 25370 30870 20710 121710
11 N 0 27190 26690 240520 227670 855130 X

65+ Y 0 110 110 110 110 380 220
inithx.i.1 2-7 N 0 0-50 0-110 0-110 0-160 0-330 0-660

8 N 0 330 280 660 660 1590 3020
9 N 60 1930 2190 5880 5210 11260 19060

10 N 110 18840 22130 65200 43390 114130 152750
54+ Y 50 170 170 160 160 280 280

le450_15a 2-4 N 0 0 0 0 0 0 0
5 N 6920 0 0 0 0 0 0
6 N X 0 0 0 0 160 60
7 N X 160 110 50 0 1160 270
8 N X 2360 1750 430 380 14330 1870
9 N X 39430 26690 3350 3130 255460 15380

15 Y X X X X X X X
16 Y X X X 0 X 60 X
17 Y X 0 0 0 X 0 X

le450_25a 2-6 N 0-50 0 0 0 0 50 0
7 N 440 0 50 0 60 170 110
8 N 4170 220 550 160 160 1100 820
9 N 109080 1590 6200 880 820 12350 4340

10 N X 24010 85030 6700 6420 177130 36470
25+ Y 60 0 0 0 0 0-110 0-110

le450_5a 2 N 0 0 0 0 0 0 0
3 N 2030 0 0 0 0 0 0
4 N X 0 0 0 0 0 0
5 Y X 6870 22520 3790 201240 41740 10710

6-7 Y X X X X X X X
8 Y X X X 481250 X X X
9 Y X 9610 X 0 X X 37740

10 Y X 0 0 0 X 0 50
mulsol.i.3 2-7 N 0 0 0 0 0 0 0-110

8 N 0 50 50 110 160 490 660
9 N 0 440 440 880 990 3680 5500

10 N 0 3850 3630 6970 8960 34320 56350
11 N 0 35480 34440 65750 82000 278420 455720

31+ Y 0 0 0 0 0 0 0
zeroin.i.1 2-7 N 0 0 0 0-50 0-60 0-110 0-110

8 N 0 110 60 160 160 550 610
9 N 0 660 550 1040 1160 5110 8130

10 N 0 5770 4830 8730 10430 46250 57620
11 N 0 55200 45150 82170 101170 439070 509490

49+ Y 0 0 0 0 0 0-110 0-110

Tab. 1 Computational experiments for k-coloring 

Scientific Papers of the University of Pardubice 
Series B - The Jan Perner Transport Faculty 8 (2002)  - 135 - 



Tab. 2 Graph characteristics 

Graph name N
um

be
r o

f v
er

tic
es

N
um

be
r o

f e
dg

es

M
in

im
um

 v
er

te
x 

de
gr

ee

A
ve

ra
ge

 v
er

te
x 

de
gr

ee

M
ax

im
um

 v
er

te
x 

de
gr

ee

G
ra

ph
 d

en
si

ty
 [%

]

C
hr

om
at

ic
 n

um
be

r

fpsol2.i.1 496 11654 0 46.99 252 9.49 65
inithx.i.1 864 18707 0 43.3 502 5.02 54
le450_15a 450 8168 2 36.3 99 8.09 15
le450_25a 450 8260 2 36.71 128 8.18 25
le450_5a 450 5714 13 25.4 42 5.66 5
mulsol.i.3 184 3916 0 42.57 157 23.26 31
zeroin.i.1 211 4100 0 38.86 111 18.51 49
rnd_010.col 10 24 2 4.8 8 53.33 4
rnd_020.col 20 98 4 9.8 19 51.58 7
rnd_030.col 30 191 4 12.73 24 43.91 8
rnd_040.col 40 360 4 18 36 46.15 10
rnd_050.col 50 573 3 22.92 41 46.78 12
rnd_100.col 100 2431 3 48.62 91 49.11 X
upl_08.col 8 28 7 7 7 100 8
upl_09.col 9 36 8 8 8 100 9
upl_10.col 10 45 9 9 9 100 10
upl_11.col 11 55 10 10 10 100 11
upl_12.col 12 66 11 11 11 100 12
upl_13.col 13 78 12 12 12 100 13

C
om

pl
et

e
B

en
ch

m
ar

ks
G

en
er

at
ed

Algorithm BT-FC2 was the best one on graphs with higher average vertex degree. It 
means that graphs with lower average vertex degree (below 36) are worth ordering 
uninstantiated variables according to two keys, where the number of constraints in which 
the variable participates (degree of the vertex represented by the given variable) is a 
secondary key. The choice of the primary key has no substantial impact on the 
algorithm’s performance. Graphs with higher average vertex degree are not worth 
keeping lists ordered according to two keys, but the domain size is sufficient in order to 
be taken into consideration. The most difficult variable participating in the most 
constraints will be a root of the search tree. Experiments on generated general graphs 
confirm this conclusion. 

 Ľudmila Jánošíková, Radoslav Stasinka: 
- 136 - Constraint Programming: An Application for Graph Coloring 
 



  

3.2 Optimal graph coloring 
Graph coloring, which uses the minimum number of colors, is an optimization 

problem. 

A constraint satisfaction problem is transformed to an optimization problem by 
adding an objective function f (x1, x2, …, xn ) : D1 × D2 × … × Dn → ℜ, which has to be 
minimized or maximized (we will consider minimization further ahead). The optimization 
problem can be solved by using constraint programming in such a way that, at first, the 
corresponding CSP is solved, while ignoring the objective function. Let y1, y2, …, yn  be a 
solution. The solution space is then limited by adding the constraint 
f (x1, x2, …, xn ) < f (y1, y2, …, yn ) and the new CSP is solved. The added constraint 
specifies that a new solution must have a better objective value than the preceding one. 
Then, the constraint for the objective function is updated and the search process 
continues. The procedure ends when no feasible solution exists. The last feasible 
solution is the optimal one. 

To find the chromatic number of the graph, the graph coloring algorithm repeats 
with decreasing number of colors until a feasible solution exists. At the beginning, the 
number of colors was set to the maximum vertex degree + 1 for generated general 
graphs, to n for complete graphs, and to 4 for planar graphs. Algorithm BT-FC2 was 
used, because it outperforms the other constraint programming algorithms for the k-
coloring problem in most cases. The results were compared to the standard backtracking 
algorithm for optimal graph coloring [1]. This algorithm runs on graphs with at most 100 
vertices in a reasonable time (on a PC). On larger graphs, the computation takes hours. 

The computational results for graphs with less than 100 vertices are summarized in 
tab. 3. They correspond to our experience with the k-coloring problem. Even for the 
optimal coloring problem, the standard backtracking algorithm outperforms the 
backtracking algorithm combined with constraint propagation on graphs with higher 
density. BT-FC2 is the winner on planar graphs. It runs in a fraction of a second even on 
a graph with 1000 vertices.  

Another conclusion can be drawn from the experiments. As we can see in tab. 1, 
the backtracking algorithm combined with constraint propagation finds the solution for the 
number of colors approximating the chromatic number from above immediately. The 
number of colors, for which the computation gets slower, can be used as a more precise 
upper bound for the standard backtracking algorithm. 

4. Conclusion 

There are our experiences with application of constraint programming to the graph 
coloring problem described in this paper. We have examined the k-coloring problem and 
the optimal coloring problem. In both cases, the same results have been derived: the 
backtracking algorithm combined with constraint propagation significantly outperforms the 
simple backtracking algorithm on sparse and planar graphs. This result is very 

Scientific Papers of the University of Pardubice 
Series B - The Jan Perner Transport Faculty 8 (2002)  - 137 - 



encouraging. It confirms that constraint programming is a prospective method, which can 
be surprising when accomplishing short running times, even when used for solving well-
known problems.  

Tab. 3 Computational experiments for optimal coloring 

pl_050 4 Y 50 0
pl_060 4 Y 60 5160
pl_070 4 Y 50 29270
pl_080 4 Y 60 43840
pl_090 4 Y 50 411390
pl_100 4 Y 110 X
rnd_010 4 Y 220 0
rnd_020 7 Y 490 0
rnd_030 8 Y 600 0
rnd_040 10 Y 84310 160
rnd_050 12 Y X 3510
upl_08 8 Y 110 0
upl_09 9 Y 60 0
upl_10 10 Y 110 0
upl_11 11 Y 610 0
upl_12 12 Y 4780 0
upl_13 13 Y 49050 0

Graph name Chromatic 
number

Result BT-FC2 
minimal

Backtracking 
minimal

  
Lektoroval:Doc. Ing. Antonín Kavička, Ph.D.  

Předloženo: 11.6.2003 

 

References 

1. BROWN J. R. Chromatic scheduling and chromatic number problems. Management Science 
19: 456-463, (1972). 

2. GAREY M. R., JOHNSON D. S. The complexity of near-optimal graph coloring. Journal of the 
ACM, 23:43-49, (1976). 

3. KILBY P., PROSSER P., SHAW P. A comparison of traditional and constraint-based heuristic 
methods on vehicle routing problems with side constraints. Constraints 5(4): 389-414, (2000). 

4. KUMAR V. Algorithms for constraint satisfaction problems: A survey. AI Magazine13(1): 32-44, 
(1992). 

5. MCHUGH J. A. Algorithmic Graph Theory. Prentice-Hall, (1990). 
6. PLESNÍK J. Grafové algoritmy. Veda, Bratislava, (1983). 
7. VAN HENTENRYCK P., MICHEL L., PERRON L., RÉGIN J.-C. Constraint programming in 

OPL. In Proceedings of the International Conference on Principles and Practice of Declarative 
Programming, Paris, France, (1999). 

 Ľudmila Jánošíková, Radoslav Stasinka: 
- 138 - Constraint Programming: An Application for Graph Coloring 
 



  

Resumé 

PROGRAMOVÁNÍ S OMEZUJÍCÍMI PODMÍNKAMI: APLIKACE PRO BARVENÍ GRAFU 

Ľudmila JÁNOŠÍKOVÁ, Radoslav STASINKA 

Článek se zabývá algoritmy pro barvení grafu založenými na programování s omezujícími 
podmínkami. Popisuje princip programování s omezujícími podmínkami a jeho implementaci na 
uvedený problém. Obsahuje výsledky výpočetních experimentů, které navzájem porovnávají různé 
modifikace algoritmu pro obarvení grafu určitým počtem barev. Na základě nejrychlejší modifikace 
jsme sestavili algoritmus pro obarvení grafu minimálním počtem barev. Tento algoritmus jsme 
porovnali s klasickým backtracking algoritmem. 

 

Summary 

CONSTRAINT PROGRAMMING: AN APPLICATION FOR GRAPH COLORING 

Ľudmila JÁNOŠÍKOVÁ, Radoslav STASINKA 

The paper deals with graph coloring algorithms based on constraint programming. Principles 
of constraint programming and its implementation for the graph coloring problem are described. 
Computational results are reported to compare several modifications of the algorithm for graph 
coloring with a given number of colors. The fastest modification forms the basis of an optimization 
algorithm for graph coloring with the minimum number of colors. This algorithm is compared with 
the standard backtracking algorithm.   

 

Zusammenfassung 

NAME IHRES ARTIKELS 

Ľudmila JÁNOŠÍKOVÁ, Radoslav STASINKA 

Der Artikel beschäftigt sich mit Algorithmen für die Graphanfärbung auf der Grundlage von 
dem Programmieren mit beschränkten Bedingungen. Er beschreibt das Prinzip des 
Programmierens mit beschränkten Bedingungen und seine Anwendung auf das angegebene 
Problem. Er enthaltet Ergebnisse der Rechnungexperimente, die verschiedene Modifikationen des 
Algorithmus für die Graphanfärbung mit einer bestimmten Farbanzahl miteinander vergleichen. 
Aufgrund der schnellsten Modifikation haben wir einen Algorithmus für die Graphanfärbung mit der 
minimalen Farbanzahl konstruiert. Diesen Algorithmus haben wir mit dem klassischen 
Backtrackingalgorithmus verglichen. 

 

Scientific Papers of the University of Pardubice 
Series B - The Jan Perner Transport Faculty 8 (2002)  - 139 - 


